Skip to main content

The phytohormonal interactions between Azospirillum and wheat

  • Chapter
Nitrogen Fixation with Non-Legumes

Part of the book series: Developments in Plant and Soil Sciences ((DPSS,volume 35))

Abstract

A simple model system was designed to detect positive effects of Azospirillum on the root growth of cereals. Cultures of A. brasilense Sp7 and A. lipoferum Sp59 did not excrete gibberellins and cytokinins in the logarithmic and in the early stationary growth phase. Indoleacetic acid (I A A) was formed, however, only in the stationary phase of the cultures. The addition of D,L-tryptophan to the medium enhanced the formation of IA A. A further, still unidentified substance was produced by Azospirillum under denitrifying conditions in the logarithmic growth phase. The substance was almost twice as active as IAA in increasing the wet weight of wheat root segments. It is suggested that this unidentified substance is the major stimulus affecting the growth of cereals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Biddington NL and Thomas TH 1973 A modified Amaranthus betacyanin bioassay for the rapid determination of cytokinins in plant extracts. Planta (Berl.) III, 183–186.

    Article  Google Scholar 

  • Blakely LM, Blakely RM and Galloway CM 1986 Effects of dimethyl sulfoxide and pH on indoleacetic acid induced lateral root formation in the radish seedling root. Plant Physiol. 80, 790–791.

    Article  PubMed  CAS  Google Scholar 

  • Bothe H, Klein B, Stephan MP and Döbereiner J 1981 Transformations of inorganic nitrogen by Azospirillum spp. Arch. Microbiol. 130, 96–100.

    Article  CAS  Google Scholar 

  • Danneberg G, Zimmer W and Bothe H 1985 Some physiological and biochemical properties of denitrification by Azospirillum brasilense. In Azospirillum III, Genetics, Physiology, Ecology, Ed. W Klingmüller. pp 127–138, Springer, Berlin, Heidelberg.

    Google Scholar 

  • Döbereiner J 1983a Dinitrogen fixation in the rhizosphere and phyllosphere associations. In Inorganic Plant Nutrition, A. Läuchli and RL Bieleski (eds.), Encycl. Plant Physiol., New Series, Vol. 15A, pp 33–35, Springer, Berlin, Heidelberg, New York.

    Google Scholar 

  • Döbereiner J 1983b Ten years of Azospirillum. In Azospirillum II, Genetics, Physiology, Ecology. Ed. W Klingmüller. pp. 9–23, Birkhäuser, Basel, Boston, Stuttgart.

    Google Scholar 

  • Elmerich C 1984 Molecular biology and ecology of diazotrophs associated with non-leguminous plants. Bio/Technology 2, 967–978.

    Article  CAS  Google Scholar 

  • Frankland B and Warening PF 1960 Effect of gibberellic acid on hypocotyl growth of lettuce seedlings. Nature (London) 185, 225–226.

    Article  Google Scholar 

  • Hartmann A, Singh M and Klingmüller W 1983 Isolation and characterization of Azospirillum mutants excreting high amounts of indoleacetic acid. Can. J. Microbiol. 29, 916–923.

    Article  CAS  Google Scholar 

  • Jones RL and Varner JE 1967 The bioassay of gibberellins. Planta (Bed.) 72, 155–161.

    Article  CAS  Google Scholar 

  • Kapulnik Y, Okon Y and Henis Y 1985 Changes in root morphology of wheat caused by Azospirillum inoculation. Can. J. Microbiol. 31, 881–887.

    Article  Google Scholar 

  • Kleeberger A, Castorf H and Klingmüller W 1983 The rhizosphere microflora of wheat and barley with special reference to Gram negative bacteria. Arch. Microbiol. 136, 306–311.

    Article  Google Scholar 

  • Libbert E 1957 Die Regulation des Wurzelwachstums durch synthetische und endogene Inhibitoren. Planta (Berl.) 5, 25–40.

    Article  Google Scholar 

  • Lindberg T and Granhall U 1984 Isolation and characterization of dinitrogen fixing bacteria from the rhizosphere of temperate cereals and forage grasses. Appl. Environ. Microbiol. 48, 683–689.

    PubMed  CAS  Google Scholar 

  • Nelson LM and Knowles R 1978 Effect of oxygen and nitrate on nitrogen fixation and denitrification by Azospirillum brasilense grown in continuous culture. Can. J. Microbiol. 24, 1395–1403.

    Article  PubMed  CAS  Google Scholar 

  • Neuer G, Kronenberg A and Bothe H 1985 Denitrification and nitrogen fixation by Azospirillum III. Properties of a wheat Azospirillum association Arch. Microbiol. 141, 364–370.

    Article  CAS  Google Scholar 

  • Okon Y 1985 Azospirillum as a potential inoculant for agriculture. Trends Biotechnol. 3, 223–228.

    Article  Google Scholar 

  • Reynders L and Vlassak K 1979 Conversion of tryptophan to indoleacetic acid by Azospirillum sp. Soil Biol. Biochem. 11, 547–548.

    Article  CAS  Google Scholar 

  • Thomas-Bauzon D, Weinhard P, Villecourt P and Balandreau J 1982 The spermosphere model: Its use in growing, counting and isolating N2-fixing bacteria from the rhizosphere of rice. Can. J. Microbiol. 28, 922–928.

    Article  Google Scholar 

  • Tien TM, Gaskin MH and Hubbell DH 1979 Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum L.). Appl. Environ. Microbiol. 37, 219–226.

    Google Scholar 

  • Weiler EW 1984 Immuno assay of plant growth regulators. Annu. Rev. Plant Physiol. 35, 85–95.

    Article  CAS  Google Scholar 

  • Whallon JH, Acker G and El-Khawas H 1985 Electron microscopy of young wheat roots inoculated with Azospirillum. In Azospirillum III. Genetics, Physiology, Ecology. Ed. W Klingmüller. pp 222–229, Springer, Berlin, Heidelberg.

    Google Scholar 

  • Zimmer W, Roeben K, Danneberg G and Bothe H 1987 The bacterial genus Azospirillum and its potential applications. In Inorganic Nitrogen Metabolism. Ed. W Ullrich, pp 177–182. Springer, Berlin, Heidelberg.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to Professor E.-G. Niemann, Hannover, on the occasion of his 60th birthday.

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Zimmer, W., Bothe, H. (1989). The phytohormonal interactions between Azospirillum and wheat. In: Skinner, F.A., Boddey, R.M., Fendrik, I. (eds) Nitrogen Fixation with Non-Legumes. Developments in Plant and Soil Sciences, vol 35. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0889-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0889-5_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6888-8

  • Online ISBN: 978-94-009-0889-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics