Skip to main content

Synthetic multiple-interaction chiral bonded phases

  • Chapter
Book cover Chiral Liquid Chromatography
  • 184 Accesses

Abstract

In the field of chiral liquid chromatography there is a large and important class of chiral stationary phases (CSPs), which may be termed synthetic multipleinteraction bonded phases. This class of CSP has arisen during the past ten years or so, nurtured by an eminently sensible idea: that the greater the number of specific, discrete, simultaneous interactions between chiral solute molecules and a chiral locus on the stationary phase, then the greater the likelihood of effective chiral discrimination, and thus of chromatographic resolution of enantiomeric solutes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Dalgliesh, C.E. (1952) Optical resolution of aromatic amino acids on paper chromatograms. J. Chem. Soc.47, 3940–3942.

    Article  Google Scholar 

  • Dappen, R., V.R. Meyer and H. Arm (1986) New chiral, covalently bonded, π-donor stationary phases for high-performance liquid chromatography, based on derivatives of optically active 1-(α-naphthyl)ethylamine. J. Chromatogr.361, 93–105.

    Article  Google Scholar 

  • Doyle, T.D., W.M. Adams, F.S. Fry, Jr. and I.W. Wainer (1986) The application of HPLC chiral stationary phases to stereochemical problems of pharmaceutical interest: a general method for the resolution of enantiomeric amines as α-naphthylcarbamate derivatives. J. Liq. Chromatogr.9, 455–471.

    Article  Google Scholar 

  • Doyle, T.D. and I.W. Wainer (1984) A unique reversal of elution order during direct enantiomeric resolution of amide derivatives of 1-phenyl-2-aminopropane by high performance liquid chromatography on chiral stationary phases. J. High Resolut. Chromatogr., Chromatogr. Commun.7, 38–40.

    Article  Google Scholar 

  • Hara, S. and A. Dobashi (1979) Liquid chromatographic resolution of enantiomers on normal-phase chiral amide-bonded silica gel. Retentions of optically active α-amino acid derivatives on N-acyl homologues of L-valylamino-propylsilanised silica phases. J. Chromatogr.186, 543–552.

    Article  Google Scholar 

  • Hyun, M.H. and W.H. Pirkle (1987) Preparation and evaluation of a chiral stationary phase bearing both π-acidic and π-basic sites. J. Chromatogr.393, 357–365.

    Article  Google Scholar 

  • Kip, J., P. Van Haperen and J.C. Kraak (1986) R-N-(pentafluorobenzoyl)phenylglycine as a chiral stationary phase for the separation of enantiomers by high-performance liquid chromatography. J. Chromatogr.356, 423–427.

    Article  Google Scholar 

  • Lee, E.D., J.D. Henion, C.A. Brunner, I.W. Wainer, T.D. Doyle and J. Gal (1986) High-performance liquid chromatographic chiral stationary phase separation with fìlament-on thermospray mass spectrometric identification of the enantiomer contaminant (S)-(+)-methamphetamine. Anal. Chem.58, 1349–1352.

    Article  Google Scholar 

  • Lloyd, M.J.B. (1986) Preparation and evaluation of new chiral stationary phases for high-performance liquid chromatographic separation of enantiomers. J. Chromatogr.351, 219–229.

    Article  Google Scholar 

  • Mikes, F., G. Boshart and E. Gil-Av (1976) Resolution of optical isomers by high-performance liquid chromatography, using coated and bonded chiral charge-transfer complexing agents as stationary phases. J. Chromatogr.122, 205–221.

    Article  Google Scholar 

  • Nicoll-Grifílth, D.A. (1987) Stereoelectronic model to explain the resolution of enantiomeric ibuprofen amides on the Pirkle chiral stationary phase. J. Chromatogr.402, 179–187.

    Article  Google Scholar 

  • Oi, N. and H. Kitahara (1983) High-performance liquid chromatographic separation of chiral alcohols on chiral stationary phases. J. Chromatogr.265, 117–120.

    Article  Google Scholar 

  • Oi, N. and H. Kitahara (1986) Enantiomer separation by HPLC with some urea derivatives of L-valine as novel chiral stationary phases. J. Liq. Chromatogr.9, 511–517.

    Article  Google Scholar 

  • Oi, N., T. Kitahara, T. Doi and S. Yamamoto (1983a) Urea derivatives of chiral amino acids and amines as novel stationary phases for enantiomer separation by high performance liquid chromatography. Bunseki Kagaku (Jap. Anal.) 32, 345–346.

    Article  Google Scholar 

  • Oi, N., H. Kitahara, Y. Matasumoto, H. Nakajima and Y. Horikawa (1988) Enantiomer separation by HPLC with some novel chiral stationary phases (unpublished).

    Google Scholar 

  • Oi, N., M. Nagase and T. Doi (1983b) High-performance liquid chromatographic separation of enantiomers on (S)-1 -(α-naphthyl)ethylamine bonded to silica gel. J. Chromatogr.257, 111–117.

    Article  Google Scholar 

  • Oi, N., M. Nagase, Y. Inda and T. Doi (1983c) High-performance liquid chromatographic separation of enantiomers on (1R, 3R)-trans-chrysanthemic acid and its amide derivatives bonded to silica gel. J. Chromatogr.259, 487–493.

    Article  Google Scholar 

  • Perry, J.A., J.D. Rateike and T.J. Szczerba (1987) Eluting trace components before major constituents. J. Chromatogr.389, 57–64.

    Article  Google Scholar 

  • Pettersson, C. and C. Gioeli (1987) Separation of enantiomeric acids using immobilized acetylquinine as a chiral stationary phase. J. Chromatogr.398, 247–254.

    Article  Google Scholar 

  • Pirkle, W.H., D.M. Alessi, M.H. Hyun and T.C. Pochapsky (1987a) Separation of some enantiomeric di- and tripeptides on chiral stationary phases. J. Chromatogr.398, 293–309.

    Article  Google Scholar 

  • Pirkle, W.H., R. Dappen and D.S. Reno (1987b) Applications for racemic versions of chiral stationary phases. J. Chromatogr.407, 211–216.

    Article  Google Scholar 

  • Pirkle, W.H., J.M. Finn, J.L. Schreiner and B.C. Hamper (1981) A widely useful chiral stationary phase for the high-performance liquid chromatography separation of enantiomers. J. Chem. Soc.103, 3964–3966.

    Article  Google Scholar 

  • Pirkle, W.H. and D.W. House (1979) Chiral high-pressure liquid chromatographic stationary phases. 1. Separation of the enantiomers of sulphoxides, amines, amino acids, alcohols, hydroxy acids, lactones, and mercaptans. J. Org. Chem.44, 1957–1960.

    Article  Google Scholar 

  • Pirkle, W.H., D.W. House and J.M. Finn (1980) Broad spectrum resolution of optical isomers using chiral high-performance liquid chromatographic bonded phases. J. Chromatogr.192, 143–158.

    Article  Google Scholar 

  • Pirkle, W.H. and M.H. Hyun (1984) A chiral stationary phase for the facile resolution of amino acids, amino alcohols, and amines as the N-3, 5-dinitrobenzoyl derivatives. J. Org. Chem.49, 3043–3046.

    Article  Google Scholar 

  • Pirkle, W.H. and M.H. Hyun (1985) Reversed-phase chromatographic resolution of N-(3, 5-dinitrobenzoyl)-α-amino acids on chiral stationary phases. J. Chromatogr.322, 287–293.

    Article  Google Scholar 

  • Pirkle, W.H. and M.H. Hyun (1985a) α-Arylalkylamine-derived chiral stationary phases. Evaluation of urea linkages. J. Chromatogr.322, 295–307.

    Article  Google Scholar 

  • Pirkle, W.H. and M.H. Hyun (1985b) Preparation and use of hydantoin-based chiral stationary phases. J. Chromatogr.322, 309–320.

    Article  Google Scholar 

  • Pirkle, W.J., M.H. Hyun and B. Bank (1984) A rational approach to the design of highly-effective chiral stationary phases. J. Chromatogr.316, 585–604.

    Article  Google Scholar 

  • Pirkle, W.H., G. Mahler, and M.H. Hyun (1986b) Separation of the enantiomers of 3,5-dinitrophenyl carbamates and 3,5-dinitrophenyl ureas. J. Liq. Chromatogr.9, 443–453.

    Article  Google Scholar 

  • Pirkle, W.H., G.S. Mahler, T.C. Pochapsky and M.H. Hyun (1987) Direct chromatographic separation of enantiomeric diol derivatives. J. Chromatogr.388, 307–314.

    Article  Google Scholar 

  • Pirkle, W.H. and M.H. Hyun (1985b) Preparation and use of hydantoin-based chiral stationary phase for the chromatographic separation of enantiomers. J. Am. Chem. Soc.108, 352–354.

    Article  Google Scholar 

  • Pirkle, W.H. and T.C. Pochapsky (1986b) Generation of extreme selectivity in chiral recognition. J. Chromatogr.369, 175–177.

    Article  Google Scholar 

  • Pirkle, W.H. and T.H. Pochapsky (1987a) Chiral stationary phases for the direct LC separation of enantiomers. In Advances in Chromatography, ed. J.C. Giddings, Marcel Dekker, New York.

    Google Scholar 

  • Pirkle, W.H. and T.C. Pochapsky (1987b) Chiral molecular recognition in small bimolecular systems: a spectroscopic investigation into the nature of diastereomeric complexes. J. Chem. Soc.109, 5975–5982.

    Article  Google Scholar 

  • Pirkle, W.H., T.C. Pochapsky, G.S. Mahler, D.E. Corey, D.S. Reno, and D.M. Alessi (1986a) Useful and easily prepared chiral stationary phases for the direct chromatographic separation of the enantiomers of a variety of derivatized amines, amino acids, alcohols, and related compounds. J. Org. Chem.51, 4991–5000.

    Article  Google Scholar 

  • Pirkle, W.H., T.C. Pochapsky, G.S. Mahler and R.E. Field (1985) Chromatographic separation of the enantiomers of 2-carboalkoxyindolines and N-aryl-α-amino esters on chiral stationary phases derived from N-(3, 5-dinitrobenzoyl)-α-amino acids. J. Chromatogr.348, 89–96.

    Article  Google Scholar 

  • Pirkle, W.H. and J.L. Schreiner (1981) Chiral high-pressure liquid chromatographic stationary phases. 4. Separation of the enantiomers of bi-β-naphthols and analogues. J. Org. Chem.46, 4988–4991.

    Article  Google Scholar 

  • Pirkle, W.H. and T.J. Sowin (1987a) Direct liquid chromatographic separation of phthalide enantiomers. J. Chromatogr.387, 313–321.

    Article  Google Scholar 

  • Pirkle, W.H. and T.J. Sowin (1987b) Design, preparation and performance of a phthalide-based chiral stationary phase. J. Chromatogr.396, 83–92.

    Article  Google Scholar 

  • Pirkle, W.H. and A. Tsipouras (1984) Direct liquid chromatographic separation of benzodiaze-pinone enantiomers. J. Chromatogr.291, 291–298.

    Article  Google Scholar 

  • Pirkle, W.H. and C.J. Welch (1984) Chromatographic separation of the enantiomers of acylated amines on chiral stationary phases. J. Org. Chem.49, 138–140.

    Article  Google Scholar 

  • Pirkle, W.H., C.J. Welch, M.H. Hyun (1983) A chiral recognition model for the chromatographic resolution of N-acylated 1-aryl-l-aminoalkanes. J. Org. Chem.48, 5022–5026.

    Article  Google Scholar 

  • Tambute, A., A. Begos, M. Lienne, M. Caupe and R. Rosset (1987) New chiral stationary phases containing a phosphorus atom as an asymmetric centre. 1. Synthesis and first chromatographic results. J. Chromatogr.396, 65–81.

    Article  Google Scholar 

  • Tambute, A., P. Gareil, M. Caude and R. Rosset (1986) Preparative separation of a racemic tertiary phosphine oxides by chiral high-performance liquid chromatography. J. Chromatogr.363, 81–93.

    Article  Google Scholar 

  • Wainer, I.W. and M.C. Alembik (1986) Steric and electronic effects in the resolution of enantiomeric amides on a commercially available Pirkle-type high-performance liquid chromatographic chiral stationary phase. J. Chromatogr.367, 59–68.

    Article  Google Scholar 

  • Wainer, I.W. and T.D. Doyle (1983) Application of high-performance liquid chromatographic chiral stationary phases to pharmaceutical analysis. Direct enantiomeric resolution of amide derivatives of 1-phenyl-2-aminopropane. J. Chromatogr.259, 465–472.

    Article  Google Scholar 

  • Wainer, I.W. and T.D. Doyle (1984) Application of high-performance liquid chromatographic chiral stationary phases to pharmaceutical analysis: structural and conformational effects in the direct enantiomeric resolution of α-methylarylacetic acid anti-inflammatory agents. J. Chromatogr.284, 117–124.

    Article  Google Scholar 

  • Wainer, I.W., T.D. Doyle, K.H. Donn and J.R. Powell (1984) The direct enantiomeric determination of (-)- and (+)-propranolol in human serum by high-performance liquid chromatography on a chiral stationary phase. J. Chromatogr.306, 405–411.

    Article  Google Scholar 

  • Wainer, I.W., T.D. Doyle, F.S. Fry, Jr. and Z. Hamidzadeh (1986) Chiral recognition model for the resolution of ephedrine and related α,β-aminoalcohols as enantiomeric oxazolidine derivatives. J. Chromatogr.355, 149–156.

    Article  Google Scholar 

  • Yamashita, J., T. Numakura, H. Kita, T. Suzuki, S. Oi, S. Miyano, H. Hashimoto and T. Nobuhara (1987) High-performance liquid chromatographic separation of enantiomers on axially chiral binaphthalene derivatives bonded to silica gel. J. Chromatogr.403, 275–279.

    Article  Google Scholar 

  • Yang, Z.Y., S. Barkan, C. Brunner, J.D. Weber, T.D. Doyle and I.W. Wainer (1985) Resolution of enantiomeric barbiturates, succinimides and related molecules on four commercially available chiral stationary phases. J. Chromatogr.324, 444–449.

    Article  Google Scholar 

  • Zief, M., L.J. Crane and J. Horvath (1984) Selection of the mobile phase for enantiomeric resolution via chiral stationary phase columns. J. Liq. Chromatogr.7, 709–730.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Chapman & Hall

About this chapter

Cite this chapter

Doyle, T.D. (1989). Synthetic multiple-interaction chiral bonded phases. In: Lough, W.J. (eds) Chiral Liquid Chromatography. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0861-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0861-1_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6875-8

  • Online ISBN: 978-94-009-0861-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics