Skip to main content

Neuronal plasticity in the central nervous system: a pharmacological approach

  • Chapter
Plasticity and Morphology of the Central Nervous System
  • 48 Accesses

Abstract

In 1914 Ramon y Cajal [1] stated that “… in the adult central nervous system (CNS) the nervous pathways are something fixed, finished and immutable. All may die, nothing may be reborn”. This concept aside, Cajal however pointed out that mature central fibres fail to regrow because of the absence of some “auxliary factors” or “catalytic substances”, which are present during ontogenic development, but may be missing in the adult stage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cajal, S Ramon y (1914). Estudios sobre la Dege- neration y Regeneracion del Sistema Nervioso. N. Moya, Madrid.

    Google Scholar 

  2. Varon, S, Manthorpe, M and Williams, LR (1984). Neuronotrophic and neurite-promoting factors and their clinical potentials. Dev Neurosci, 6, 73

    Article  CAS  Google Scholar 

  3. Bray, GM, Vidal-Sanz, M and Aguayo, AY (1987). Regeneration of axons from the central nervous system of adult rats. Progr Brain Res, 71, 373

    Article  CAS  Google Scholar 

  4. Cotman, CW and Nieto-Sampedro, M (1984). Cell biology of synaptic plasticity. Science, 225, 1287

    Article  PubMed  CAS  Google Scholar 

  5. Magistretti, PJ, Morrison, JH and Bloom,(1984) FENervous System Development and Repair“ Discussions in Neurosciences, Vol. 1(2)

    Google Scholar 

  6. Nieto-Sampedro, M, Lewis, ER, Cotman, CW, Manthorpe, M, Skater, SD, Barbin, G, Longo, FM and Varon, S (1982). Brain injury causes a time dependent increase in neuronotrophic activity at the lesion site. Science, 217, 860

    Article  PubMed  CAS  Google Scholar 

  7. Whittemore, SR, Nieto-Sampedro, M, Needels, DL and Cotman, CW (1985). Neuronotrophic factors for mammalian brain neurons: injury induction in neonatal, adult and aged rat brain. Devl Brain Res, 20, 169

    Article  Google Scholar 

  8. Appel, SH (1981). A unifying hypothesis for the cause of amyotrophic lateral sclerosis, parkinsonism and Alzheimer’s disease. Ann Neurol, 10, 499

    Article  PubMed  CAS  Google Scholar 

  9. Rothman, SM and Olney, JW (1986). Glutamate and the pathophysiology of hypoxic-ischemic brain damage. Ann Neurol, 19, 105

    Article  PubMed  CAS  Google Scholar 

  10. Ledeen, RW, Yu, RK, Rapport, MM and Suzuki, K (1984). “Ganglioside structure, function and biomedical potential”. ( New York: Plenum Press )

    Google Scholar 

  11. Willinger, M and Schachner, M (1980). GM1 ganglioside as a marker for neuronal differentiation in mouse cerebellum. Devl Biol, 74, 101

    Article  CAS  Google Scholar 

  12. Kasarskis, EJ, Karpiak, SE, Rapport, MM, Yu, RK and Bass, NH (1981). Abnormal maturation of cerebral cortex and behavioral deficit in adult rats after neonatal administration of antibodies to gangliosides. Devl Brain Res, 1, 25

    Article  CAS  Google Scholar 

  13. Haber, B and Gorio, A (1985). “Neurobiology of Gangliosides”. (New York: Alan R Liss, Inc )

    Google Scholar 

  14. Ferrari, G, Fabris, M and Gorio, A (1983). Gangliosides enhance neurite outgrowth in PC12 cells. Devl Brain Res, 8, 215

    Article  CAS  Google Scholar 

  15. Leon, A, Benvegnù, D, Dal Toso, R, Presti, D, Facci, L, Giorgi, O and Toffano, G (1984). Dorsal root ganglia and nerve growth factor: a model for understanding the mechanism of GM1 effects on neuronal repair. J Neurosci Res, 12, 277

    Article  PubMed  CAS  Google Scholar 

  16. Facci, L, Leon, A, Toffano, G, Sonnino, S, Ghidoni, R and Tettamanti, G (1984). Promotion of neuritogenesis in mouse neuroblastoma cells by exogenous ganglioside. Relationship between the effect and the cell association of ganglioside GM1. J Neurochem, 42, 299

    Article  PubMed  CAS  Google Scholar 

  17. Skaper, SD, Katoh-Semba, R and Varon, S (1985). GM1 ganglioside accellerates neurite outgrowth from primary peripheral and central neurons under selective culture conditions. Devl Brain Res, 23, 19

    Article  CAS  Google Scholar 

  18. Doherty, P, Dickson, JG, Flanigan, TP and Walsh, FS (1985). Ganglioside GM1 does not initiate but enhances neurite regeneration of nerve growth factor-dependent sensory neurones. J Neurochem, 44, 1259

    Article  PubMed  CAS  Google Scholar 

  19. Vaccarino, F, Guidotti, A and Costa, E (1987). Ganglioside inhibition of glutamate-mediated protein kinase C translocation in primary cultures of cerebellar neurons. PNAS, 84, 8707

    Article  PubMed  CAS  Google Scholar 

  20. Toffano, G, Savoini, G, Moroni, F, Lombardi, G, Calzà, L and Agnati, LF (1983). GM1 ganglioside stimulates the regeneration of dopaminergic neurons in the central nervous system. Brain Res, 261, 163

    Article  PubMed  CAS  Google Scholar 

  21. Toffano, G, Agnati, LF, Fuxe, K, Aldinio, C, Consolazione, A, Valenti, G and Savoini, G (1984). Effect of GM1 ganglioside treatment on the recovery of dopaminergic nigro-striatal neurons after different types of lesion. Acta Physiol Scand, 122, 313

    Article  PubMed  CAS  Google Scholar 

  22. Agnati, L, Fuxe, K, Calzà, L, Benfenati, F, Cavicchioli, L, Toffano, G and Goldstein, M (1983). Ganglioside increase the survival of lesioned nigral dopamine neurons and favour the recovery of dopaminergic synaptic function in striatum of rats by collateral sprouting. Acta Physiol Scand, 119, 347

    Article  PubMed  CAS  Google Scholar 

  23. Sabel, BA, Dunbar, GL, Butler, WM and Stein, DG (1985). GM1 ganglioside stimulates neuronal reorganization and reduces rptational asymmetry after hemitransection of the nigro-striatal pathway. Exp Brain Res, 60, 27

    Article  PubMed  CAS  Google Scholar 

  24. Li, YS, Mahadik, SP, Rapport, MM and Karpiak, SE (1986). Acute effects of GM1 ganglioside: reduction in both behavioral asimmetry and loss of Na+-K+ ATPase after nigrostriatal transection. Brain Res, 377, 292

    Article  PubMed  CAS  Google Scholar 

  25. Oderfeld-Nowak, B, Skup, M, Ulas, J, Jezierska, M, Gradkowska, M and Zaremba, M (1984). Effect of GM1 ganglioside treatment on postlesi-on responses of cholinergic enzymes in rat hippocampus after various partial deafferentations. J Neurosci Res, 12, 409

    Article  PubMed  CAS  Google Scholar 

  26. Casamenti, F, Bracco, L, Bartolini, L and Pepeu, G (1985). Effects of ganglioside treatment in rats with a lesion of the cholinergic forebrain nuclei. Brain Res, 338, 45

    Article  PubMed  CAS  Google Scholar 

  27. Cuello, AC, Stephen, PH and Tagari, PC (1986). Retrograde changes in the nucleus basalis of the rat, caused by cortical damage, are prevented by exogenous ganglioside GM1. Brain Res, 376, 373.

    Article  PubMed  CAS  Google Scholar 

  28. Sofroniew, MV, Pearson, RCA, Cuello, AC, Tagari, PC and Stephens PH (1986). Parenterally administered GM1 ganglioside prevents retrograde degeneration of cholinergic cells of the rat basal forebrain. Brain Res, 398, 393

    Article  PubMed  CAS  Google Scholar 

  29. Hadjiconstantinou, M, Rossetti, ZL, Paxton, RC and Neff, NH (1986). Administration of GM1 ganglioside restores the dopamine content in striatum after chronic treatment with MPTP. Neuropharmacology, 25, 1075

    Article  PubMed  CAS  Google Scholar 

  30. Jonsson, G, Gorio, A, Hallman, H, Janigro, D, Kojima, H, Luthman, J and Zanoni, R (1984). Effects of GM1 ganglioside on developing and mature serotonin and noradrenaline neurons lesioned by selective neurotoxins. J Neurosci Res, 12, 459

    Article  PubMed  CAS  Google Scholar 

  31. Fusco, M, Donà, M, Tessari, F, Hallman, H, Jonsson, G and Gorio, A (1986). GM1 ganglioside counteracts selective neurotoxin-induced lesion of developing serotonin neurons in rat spinal cord. J Neurosci Res, 15, 467

    Article  PubMed  CAS  Google Scholar 

  32. Cahn, J, Borzeix, MG and Toffano G (1986). Effect of GM1 ganglioside and of its inner ester derivative in a model of transient cerebral ischemia in the rat. In: Tettamanti, G, Ledeen, RW, Sandhoff, K, Nagai, Y and Toffano, G (eds.) “Gangliosides and Neuronal Plasticity”. D. 435. ( Padova: Liviana Press )

    Google Scholar 

  33. Tanaka, K, Dora, E, Urbanics, R, Greenberg, JH, Toffano, G and Reivich, M (1986). Effect of the ganglioside GM1 on cerebral metabolism, microcirculation, recovery kinetics of ECoG and histology, during the recovery period following focal ischemia in cats. Stroke, 17, 1170

    Article  PubMed  CAS  Google Scholar 

  34. Karpiak, SE, Li, YS and Mahadik, SP (1987). Gangliosides (GM1 and AGF2) reduce mortality due to ischemia: protection of membrane function. Stroke 18, 184

    Article  PubMed  CAS  Google Scholar 

  35. Cuello, AC, Maysinger, D, Garofalo, L, Tagari, PC, Stephen, PH, Pioro, E and Piotte, M (1987). Influence of gangliosides and nerve growth factor on the plasticity of forebrain cholinergic neurons. In: Fuxe, K and Agnati, LF (eds.) “Receptor-receptor Interactions”. p. 62 ( England: Mac Millan Press Ltd )

    Google Scholar 

  36. Vantini, G, Fusco, M, Bigon, E and Leon, A. GM1 ganglioside potentiates the effect of nerve growth factors in preventing vinblastine-induced sympathectomy in newborn rats. Brain Res, In Press

    Google Scholar 

  37. Wieloch, T, Lindvall, 0, Blomqvist, P and Gage, FH (1985). Evidence for amelioration of ischemic neuronal damage in the hippocampal formation by lesions of the perforant path. Neurol Res, 7, 24

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Consolazione, A. (1990). Neuronal plasticity in the central nervous system: a pharmacological approach. In: Cazzullo, C.L., Sacchetti, E., Conte, G., Invernizzi, G., Vita, A. (eds) Plasticity and Morphology of the Central Nervous System. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0851-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0851-2_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6870-3

  • Online ISBN: 978-94-009-0851-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics