Skip to main content

Biosynthesis of regulatory peptides — evolutionary aspects

  • Chapter
The Comparative Physiology of Regulatory Peptides

Abstract

Neurohormonal peptides, in common with most peptides/proteins that are designated for export from the cell, are synthesized as higher-molecular-weight precursors which usually have no or reduced biological activity. The conversion to the mature secreted forms of the peptides involves limited proteolysis and frequently post-translational modifications to individual amino acid residues. Determination of a biosynthetic pathway requires a collaboration between the molecular biologist and the protein chemist. The primary structure of the primary gene product (preprohormone) is now determined, almost without exception, indirectly from the nucleotide sequence of cloned DNAs complementary to the mRNA directing synthesis of the hormone or from the nucleotide sequence of a cloned segment of DNA containing the gene isolated from an appropriate genomic library. In order to construct a processing pathway, it is necessary to isolate from a natural source the hormone and the other peptide fragment derived from the precursor and to determine their primary structures. Amino acid sequence analysis is usually carried out using the technique of automated gas-phase Edman degradation. Post-translational modification to individual amino acids may be identified most readily using the technique of fast-atom bombardment mass spectrometry. A comparison of the predicted structure of the preprohormone with the observed structures of the major peptide fragments derived from the precursor enables the identification of the sites of proteolytic cleavage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrews, P.C. and Dixon, J.E. (1981) Isolation and structure of a peptide hormone predicted from an mRNA sequence. A second somatostatin from the catfish pancreas. J. Biol. Chem., 256, 8267–70.

    Google Scholar 

  • Andrews, P.C. and Dixon, J.E. (1986) Isolation and structure of the second of two major peptide products from the precursor to an anglerfish peptide homologous to neuropeptide Y. J. Biol. Chem., 261, 8674–7.

    Google Scholar 

  • Andrews, P.C., Brayton, K. and Dixon, J.E. (1987a) Precursors to regulatory peptides: their proteolytic processing. Experientia, 43, 784–90.

    Article  Google Scholar 

  • Andrews, P.C., Hawke, D.H., Lee, T.D., Legesse, K., Noe, B.D. and Shively, J.E. (1986) Isolation and structure of the principal products of preproglucagon processing, including an amidated glucagon-like peptide. J. Biol. Chem., 261, 8128–33.

    Google Scholar 

  • Andrews, P.C., Hawke, D., Shively, J.E. and Dixon, J.E. (1984) Anglerfish preprosomatostatin is processed to somatostatin-28 and contains hydroxylysine at residue 23. J. Biol. Chem., 259, 15021–5.

    Google Scholar 

  • Andrews, P.C., Hawke, D., Shively, J.E. and Dixon, J.E. (1985) A nonamidated peptide homologous to porcine peptide YY and neuropeptide YY. Endocrinology, 116, 2677–81.

    Article  Google Scholar 

  • Andrews, P.C., Nichols, R. and Dixon, J.E. (1987b) Post-translational processing of preprosomatostatin-II examined using fast atom bombardment mass spectrometry. J. Biol. Chem., 262, 12692–9.

    Google Scholar 

  • Andrews, P.C. and Ronner, P. (1985) Isolation and structures of glucagon and glucagon-like peptide from catfish pancreas. J. Biol. Chem., 260, 3910–14.

    Google Scholar 

  • Argos, P., Taylor, W.L., Minth, C.D. and Dixon, J.E. (1983) Nucleotide and amino acid sequence comparisons of preprosomatostatins. J. Biol. Chem., 258, 8788–93.

    Google Scholar 

  • Bataille, D., Coudray, A.M., Carlqvist, M., Rosselin, G. and Mutt, V. (1982) Isolation of glucagon-37 (bioactive enteroglucagon/oxyntomodulin) from porcine jejuno-ileum. FEBS Lett., 146, 73–8.

    Article  Google Scholar 

  • Bell, G.I. (1986) The glucagon super family: precursor structure and gene organization. Peptides, 7 (Suppl. 1), 27–36.

    Article  Google Scholar 

  • Bell, G.I., Sanchez-Pescador, R., Laybourn, P.J. and Najarian, R.C. (1983a). Exon duplication and divergence in the human preproglucagon gene. Nature, Lond., 304, 368–71.

    Article  Google Scholar 

  • Bell, G.I., Santerre, R.F. and Mullenbach, G.T. (1983b) Hamster preproglucagon contains the sequence of glucagon and two related peptides. Nature, Lond., 302, 716–18.

    Article  Google Scholar 

  • Bennett, H.P.J., Browne, C.A. and Solomon, S. (1981) Biosynthesis of phosphorylated forms of corticotropin-related peptides. Proc. Natl. Acad. Sci. U.S.A., 78, 4713–17.

    Article  Google Scholar 

  • Benoit, R., Böhlen, P., Esch, F. and Ling, N. (1984) Neuropeptides derived from prosomatostatin that do not contain the somatostatin-14 sequence. Brain Res., 311, 23–9.

    Article  Google Scholar 

  • Benoit, R., Böhlen, P., Ling, N., Briskin, A., Esch, F., Brazzeau, P., Ying, S.-Y. and Guillemin, R. (1982) Presence of somatostatin-28-(l–12) in hypothalamus and pancreas. Proc. Natl. Acad. Sci. U.S.A., 79, 917–21.

    Article  Google Scholar 

  • Blobel, G. and Dobberstein, B. (1975) Transfer of proteins across membranes. J. Cell Biol., 67, 835–51.

    Article  Google Scholar 

  • Boel, E., Schwartz, T.W., Norris, K.E. and Fiil, N.P. (1984) A cDNA encoding a small common precursor for human pancreatic polypeptide and pancreatic icosapeptide. EMBO J., 3, 909–12.

    Google Scholar 

  • Conlon, J.M., Agoston, D.V. and Thim, L. (1985a) An elasmobranchian somatostatin: Primary structure and tissue distribution in Torpedo marmorata. Gen. Comp. Endocrinol., 60, 406–13.

    Article  Google Scholar 

  • Conlon, J.M., Askensten, U., Falkmer, S. and Thim, L. (1988) Primary structures of somatostatins from the islet organ of the hagfish suggest an anomalous pathway of post-translational processing of prosomatostatin-1. Endocrinology, 122, 1855–59.

    Article  Google Scholar 

  • Cordon, J.M., Ballmann, M. and Lamberts, R. (1985b) Regulatory peptides (glucagon, somatostatin, substance P, and VIP) in the brain and gastrointestinal tract of Ambystoma mexicanum. Gen. Comp. Endocrinol., 58, 150–58.

    Article  Google Scholar 

  • Conlon, J.M., Dafgard, E., Falkmer, S. and Thim, L. (1987a) A glucagon-like peptide, structurally related to mammalian oxyntomodulin, from the pancreas of a holocephalan fish, Hydrolagus colliei. Biochem.J., 245, 851–5.

    Google Scholar 

  • Conlon, J.M., Davis, M.S., Falkmer, S. and Thim, L. (1987b) Structural characterization of peptides derived from prosomatostatins I and II isolated from the pancreatic islets of two species of teleostean: the daddy sculpin and the flounder. Eur. J. Biochem., 168, 647–52.

    Article  Google Scholar 

  • Conlon, J.M., Davis, M.S. and Thim, L. (1987c) Primary structure of insulin and glucagon from the flounder (Platichthys flesus). Gen. Comp. Endocrinol., 66, 203–9.

    Article  Google Scholar 

  • Conlon, J.M., Eriksson, B., Grimelius, L., Öberg, K. and Thim, L. (1987d) Characterization of three peptides derived from prosomatostatin prosomatostatin-(l–63)-, -(65–76)- and -(79–92)-peptide in a human pancreatic tumour. Biochem.J., 248, 123–7.

    Google Scholar 

  • Conlon, J.M., Falkmer, S. and Thim, L. (1987e) Primary structures of three fragments of proglucagon from the pancreatic islets of the daddy sculpin (Cottus scorpius). Eur. J. Biochem., 164, 117–22.

    Article  Google Scholar 

  • Conlon, J.M., Hansen, H.F. and Schwartz, T.W. (1985c) Primary structure of glucagon and a partial sequence of oxyntomodulin (glucagon-37) from the guinea pig. Regul. Pept., 11, 309–20.

    Article  Google Scholar 

  • Conlon, J.M., Hansen, H.F. and Schwartz, T.W. (1985d) A truncated glucagon-like peptide from Torpedo pancreas. Regul. Pept., 13, 94.

    Article  Google Scholar 

  • Conlon, J.M., Hansen, H.F. and Schwartz, T.W. (1985d) A truncated glucagon-like peptide from Torpedo pancreas. Regul. Pept., 13, 94.

    Article  Google Scholar 

  • Conlon, J.M. and McCarthy, D.M. (1984) Fragments of prosomatostatin isolated from a human pancreatic tumour. Molec. Cell. Endocrinol., 38, 81–6.

    Article  Google Scholar 

  • Conlon, J.M., O’Toole, L. and Thim, L. (1987f) Primary structure of glucagon from the gut of the common dogfish (Scyliorhinus canicula). FEBS Lett., 214, 50–6.

    Article  Google Scholar 

  • Conlon, J.M., Schmidt, W.E., Gallwitz, B., Falkmer, S. and Thim, L. (1986) Characterization of an amidated form of pancreatic polypeptide from the daddy sculpin (Cottus scorpius). Regul. Pept., 16, 261–8.

    Article  Google Scholar 

  • Conlon, J.M. and Thim, L. (1985) Primary structure of glucagon from an elasmobranchian fish, Torpedo marmorata. Gen. Comp. Endocrinol., 60, 398–405.

    Article  Google Scholar 

  • Conlon, J.M., Thim, L., Moody, A.J. and Soling, D. (1984) Cyclic-AMP-dependent phosphorylation of glicentin. Biosci. Rep., 4, 489–96.

    Article  Google Scholar 

  • Cutfield, F., Cutfield, S.M., Carne, A., Emdin, S.O. and Falkmer, S. (1986) The isolation, purification and amino-acid squence of insulin from the teleost fish Cottus scorpius (daddy sculpin). Eur. J. Biochem., 158, 117–23.

    Article  Google Scholar 

  • Cutfield, S.M., Carne, A. and Cutfield, J.F. (1987) The amino-acid sequences of sculpin islet somatostatin-28 and peptide YY. FEBS Lett., 214, 57–61.

    Article  Google Scholar 

  • Davidson, H.W., Peshavaria, M. and Hutton, J.C. (1987) Proteolytic conversion of proinsulin into insulin. Identification of a Ca2+-dependent acidic endopeptidase in isolated insulin-secretory granules. Biochem. J., 246, 279–86.

    Google Scholar 

  • Dockray, G.J., Varro, A., Desmond, H., Young, J. and Gregory, H. (1987) Post-translational processing of the porcine gastrin precursor by phosphorylation of the COOH-terminal fragment. J. Biol. Chem., 262, 8643–7.

    Google Scholar 

  • Douglass, J., Civelli, O. and Herbert, E. (1984) Polyprotein gene expression: generation of diversity of neuroendocrine peptides. Annu. Rev. Biochem., 53, 665–715.

    Article  Google Scholar 

  • Duve, H., Thorpe, A., Lazarus, N.R. and Lowry, P.J. (1982) A neuropeptide of the blowfly Calliphora vomitoria with an amino acid composition homologous with vertebrate pancreatic polypeptide. Biochem. J., 201, 429–32.

    Google Scholar 

  • Evans, E.A., Gilmore, R. and Blobel, G. (1986) Purification of microsomal signal peptidase as a complex. Proc. Natl. Acad. Sci. U.S.A., 83, 581–4.

    Article  Google Scholar 

  • Falkmer, S. (1985) Comparative morphology of pancreatic islets in animals. In The Diabetic Pancreas, 2nd edn (eds B.W. Volk and E.R. Arquilla), Plenum, New York, pp. 17–52.

    Google Scholar 

  • Falkmer, S. and Van Noorden, S. (1983) Ontogeny and phylogeny of the glucagon cell. Handb. Exp. Pharmacol., 66(1), 81–119.

    Google Scholar 

  • Fletcher, D.J., Quigley, J.P., Bauer, G.E. and Noe, B.D. (1981) Characterization of proinsulin- and proglucagon-converting activities in isolated islet secretory granules. J. Cell Biol., 90, 312–22.

    Article  Google Scholar 

  • Frandsen, E.K., Gronvald, F.C., Heding, L.G., Johansen, N.L., Lundt, B.F., Moody, A.J., Markussen, J. and Volund, A. (1981) Glucagon: structure-function relationship investigated by sequence deletions. Hoppe-Seyler’s Z. Physiol. Chem., 362, 665–77.

    Google Scholar 

  • Gafvelin, G., Carlqvist, M. and Mutt, V. (1985) A preform of secretin with high secretin-like bioactivity. FEBS Lett., 184, 347–52.

    Article  Google Scholar 

  • Geisow, M.J. (1978) Polypeptide secondary structure may direct the specificity of prohormone conversion. FEBS Lett., 87, 111–14.

    Article  Google Scholar 

  • Glembotski, C.C., Eipper, B.A. and Mains, R.E. (1984) Characterization of a peptide a-amidation activity from rat anterior pituitary. J. Biol. Chem., 259, 6385–92.

    Google Scholar 

  • Gluschankof, P., Morel, A., Gomez, S., Nicolas, P., Fahy, C. and Cohen, P. (1984) Enzymes processing somatostatin-precursors: An Arg-Lys esteropeptidase from rat brain cortex converting somatostatin-28 into somatostatin-14. Proc. Natl. Acad. Sci. U.S.A., 81, 6662–6.

    Article  Google Scholar 

  • Goodman, R.H., Aron, D.C. and Roos, B.A. (1983) Rat pre-prosomatostatin. Structure and processing by microsomal membranes. J. Biol. Chem., 258, 5570–73.

    Google Scholar 

  • Goodman, R.H., Jacobs, J.W., Chin, W.W., Lund, P.K., Dee, P.C. and Habener, J.F. (1980) Nucleotide sequence of a cloned structural gene coding for a precursor of pancreatic somatostatin. Proc. Natl. Acad. Sci. U.S.A., 77, 5869–73.

    Article  Google Scholar 

  • Heinrich, G., Gros, P. and Habener, J.F. (1984) Glucagon gene sequence: four of six exons encode separate functional domains of rat pre-proglucagon. J. Biol. Chem., 259, 14082–7.

    Google Scholar 

  • Hobart, P., Crawford, R., Shen, L.P., Pictet, R. and Rutter, W.J. (1980) Cloning and sequence analysis of cDNAs encoding two distinct somatostatin precursors found in the endocrine pancreas of anglerfish. Nature, Lond., 288, 137–41.

    Article  Google Scholar 

  • Hoist, J.J., Orskov, C., Vagn Nielsen, O. and Schwartz, T.W. (1987) Truncated glucagon-like peptide I, an insulin-releasing hormone from the distal gut. FEBS Lett., 211, 169–74.

    Article  Google Scholar 

  • Hook, V. Y.H. and La Gamma, E. (1987) Product inhibition of carboxypeptidase H. J. Biol. Chem., 262, 12583–8.

    Google Scholar 

  • Hook, V.Y.H. and Loh, Y.P. (1984) Carboxypeptidase B-like converting enzyme activity in secretory granules of rat pituitary. Proc. Natl. Acad. Sci. U.S.A., 81, 2776–80.

    Article  Google Scholar 

  • Hoosein, N.M., Mahrenholz, A.M., Andrews, P.C. and Gurd, R.S. (1987) Biological activities of catfish glucagon and glucagon-like peptide. Biochem. Biophys. Res. Commun., 143, 87–92.

    Article  Google Scholar 

  • Inouye, S., Soberon, X., Franceschini, T., Nakamura, K., Itakura, K. and Inouye, M. (1982) Role of positive change on the ammo-terminal region of the signal peptide in protein secretion across the membrane. Proc. Natl. Acad. Sci. U.S.A., 79, 3438–42.

    Article  Google Scholar 

  • Julius, D., Brake, A., Blair, L., Kunisawa, R. and Thorner, J. (1984) Isolation of the putative structural gene for the lysine-arginine-cleaving endopeptidase required for processing of yeast prepro-α-factor. Cell, 37, 1075–89.

    Article  Google Scholar 

  • Kimmel, J.R., Plisetskaya, E.M., Pollock, H.G., Hamilton, J.W., Rouse, J.B., Ebner, K.E. and Rawitch, A.B. (1986) Structure of a peptide from salmon endocrine pancreas with homology to neuropeptide Y. Biochem. Biophys. Res. Commun., 141, 1084–91.

    Article  Google Scholar 

  • Kimmel, J.R., Pollock, H.G., Chance, R.E., Johnson, M.G., Reeve, J.R., Taylor, L., Miller, C. and Shively, J.E. (1984) Pancreatic polypeptide from rat pancreas. Endocrinology, 114, 1725–31.

    Article  Google Scholar 

  • Leiter, A.B., Montminy, M.R., Jamieson, E. and Goddman, R.H. (1985) Exons of the human pancreatic polypeptide gene define functional domains in the precursor. J. Biol. Chem., 260, 13013–17.

    Google Scholar 

  • Loh, Y.P., Brownstein, M.J. and Gainer, H. (1984) Proteolysis in neuropeptide processing and other neural functions. Annu. Rev. Neurosci., 7, 189–222.

    Article  Google Scholar 

  • Lopez, L.C., Frazier, M.L., Su, C.-J., Kumar, A. and Saunders, G.F. (1983) Mammalian pancreatic preproglucagon contains three glucagon-related peptides. Proc. Natl. Acad. Sci. U.S.A., 80, 5485–9.

    Article  Google Scholar 

  • Lopez, L.C., Li, W.-H., Frazier, M.L., Luo, C.-C. and Saunders, G.F. (1984) Evolution of glucagon genes. Molec. Biol. Evol., 1, 335–44.

    Google Scholar 

  • Lund, P.K., Goodman, R.H., Dee, P.C. and Habener, J.F. (1982) Pancreatic preproglucagon cDNA contains two glucagon-related coding sequences arranged in tandem. Proc. Natl. Acad. Sci. U.S.A., 79, 3345–9.

    Article  Google Scholar 

  • Lund, P.K., Goodman, R.H., Montminy, M.R., Dee, P.C. and Habener, J.F. (1983) Anglerfish islet pre-proglucagon II. Nucleotide and corresponding amino acid sequence of the cDNA. J. Biol. Chem., 258, 3280–84.

    Google Scholar 

  • Magazin, M., Minth, C.D., Funckes, C.L., Deschenes, R., Tavianini, M. and Dixon, J.E. (1982) Sequence of a cDNA encoding pancreatic pre-prosomatostatin-22. Proc. Natl. Acad. Sci. U.S.A., 79, 5152–6.

    Article  Google Scholar 

  • Minth, C.D., Taylor, W.L., Magazin, M., Tavianini, M.A., Collier, K., Weith, H.L. and Dixon, J.E. (1982) The structure of cloned DNA complementary to catfish pancreatic somatostatin-14 messenger RNA. J. Biol. Chem., 257, 10372–7.

    Google Scholar 

  • Mizuno, K. and Matsuo, H. (1984) A novel protease from yeast with specificity towards paired basic residues. Nature, Lond., 309, 558–60.

    Article  Google Scholar 

  • Mojsov, S., Heinrich, G., Wilson, I.B., Ravazzola, M., Orci, L. and Habener, J.F. (1986) Preproglucagon gene expression in pancreas and intestine diversifies at the level of post-translational processing. J. Biol. Chem., 261, 11880–89.

    Google Scholar 

  • Mommsen, T.P., Andrews, P.C. and Plisetskaya, E.M. (1987) Glucagon-like peptides activate hepatic gluconeogenesis. FEBS Lett., 219, 227–32.

    Article  Google Scholar 

  • Morel, A., Chang, J.-Y. and Cohen, P. (1984) The complete amino-acid sequence of anglerfish somatostatin-28. II. A new octacosapeptide containing the (Tyr7 Gly10; derivative of somatostatin-14. FEBS Lett., 175, 21–4.

    Article  Google Scholar 

  • Munck, A., Kervran, A., Marie, J.-C., Bataille, D. and Rosselin, G. (1984) Glucagon-37 (oxyntomodulin) and glucagon-29 (pancreatic glucagon) in human bowel: Analysis by HPLC and radioreceptor assay. Peptides, 5, 553–61.

    Article  Google Scholar 

  • Nielsen, H.V., Gether, U. and Schwartz, T.W. (1986) Cat pancreatic eicosapeptide and its biosynthetic intermediate. Conversion of a monobasic processing site. Biochem. J., 240, 69–74.

    Google Scholar 

  • Noe, B.D., Andrews, P.C., Dixon, J.E. and Spiess, J. (1986) Cotranslational and posttranslational proteolytic processing of preprosomatostatin-I in intact islet tissue. J. Cell Biol., 103, 1205–11.

    Article  Google Scholar 

  • Noe, B.D., Debo, G. and Spiess, J. (1984) Comparison of prohormone-processing activities in islet microsomes and secretory granules: evidence for distinct converting enzymes for separate islet prosomatostatins. J. Cell Biol., 19, 578–87.

    Article  Google Scholar 

  • Parish, D.C., Tuteja, R., Altstein, M., Gainer, H. and Loh, Y.P. (1986) Purification and characterization of paired basic residue-specific prohormone-converting enzyme from bovine pituitary neural lobe secretory vesicles. J. Biol. Chem., 261, 14392–6.

    Google Scholar 

  • Patzelt, C. and Schiltz, E. (1984) Conversion of proglucagon in pancreatic alpha cells: The major end products are glucagon and a single peptide, the major proglucagon fragment, that contains two glucagon-like sequences. Proc. Natl. Acad. Sci. U.S.A., 81, 5007–11.

    Article  Google Scholar 

  • Plisetskaya, E.M., Pollock, H.G., Rouse, J.B., Hamilton, J.W., Kimmel, J.R., Andrews, P.C. and Gorbman, A. (1986a) Characterization of coho salmon (Oncorhynchuskisutch) islet somatostatins. Gen. Comp. Endocrinol., 63, 252–63.

    Article  Google Scholar 

  • Plisetskaya, E.M., Pollock, H.G., Rouse, J.B., Hamilton, J.W., Kimmel, J.R. and Gorbman, A. (1986b) Isolation and structures of coho salmon (Oncorhynchus kisutch) glucagon and glucagon-like peptide. Regul. Pept., 14, 57–67.

    Article  Google Scholar 

  • Pollock, H.G., Kimmel, J.R., Hamilton, J.W., Rouse, J.B., Ebner, K.E., Lance, V. and Rawitch, A.B. (1987) Isolation and structure of Alligator Gar (Lepisosteus spatula) insulin and pancreatic polypeptide. Gen. Comp. Endocrinol., 67, 375–82.

    Article  Google Scholar 

  • Pradayrol, L., Jömvall, H., Mutt, V. and Ribet, A. (1980) N-terminally extended somatostatin: the primary structure of somatostatin-28. FEBS Lett., 109, 55–8.

    Article  Google Scholar 

  • Rholam, M., Nicolas, P. and Cohen, P. (1986) Precursors for peptide hormones share common secondary structures forming features at the proteolytic processing sites. FEBS Lett., 207, 1–6.

    Article  Google Scholar 

  • Schaefer, M., Picciotto, M.R., Kreiner, T., Kaldany, R.-R., Taussig, R. and Scheller, R.H. (1985) Aplysia neurons express a gene encoding multiple FMRF amide neuropeptides. Cell, 41, 457–67.

    Article  Google Scholar 

  • Schmidt, W.E., Mutt, V., Kratzin, H., Carlquist, M., Conlon, J.M. and Creutzfeldt, W. (1985) Isolation and characterization of proSSt1–32’ a peptide derived from the N- terminal region of porcine preprosomatostatin. FEBS Lett., 192, 141–6.

    Article  Google Scholar 

  • Schwartz, T.W. (1986) The processing of peptide precursors: ‘Proline-directed arginyl cleavage’ and other monobasic processing mechanisms. FEBS Lett., 200, 1–10.

    Article  Google Scholar 

  • Schwartz, T.W. and Hansen, H.F. (1984) Isolation of ovine pancreatic icosapeptide: a peptide product containing one cysteine residue. FEBS Lett., 168, 293–8.

    Article  Google Scholar 

  • Schwartz, T.W., Hånsen, H.F., Hakanson, R., Sundler, F. and Tager, H.S. (1984) Human pancreatic icosapeptide: isolation, sequence and immuno-histochemical localization of the COOH-terminal fragment of the pancreatic polypeptide precursor. Proc. Natl. Acad. Sci. U.S.A., 81, 708–12.

    Article  Google Scholar 

  • Schwartz, T.W. and Tager, H.S. (1981) Isolation and biogenesis of a new peptide from pancreatic islets. Nature, Lond., 294, 589–91.

    Article  Google Scholar 

  • Seino, S., Welsh, M., Bell, G.I., Chan, S.J. and Steiner, D.F. (1986) Mutations in the guinea pig preproglucagon gene are restricted to a specific portion of the prohormone sequence. FEBS Lett., 203, 25–30.

    Article  Google Scholar 

  • Shen, L.-P., Pictet, R.L. and Rutter, W.J. (1982) Human somatostatin I: sequence of the cDNA. Proc. Natl. Acad. Sci. U.S.A., 79, 4575–9.

    Article  Google Scholar 

  • Shen, L.-P. and Rutter, W.J. (1984) Sequence of the human somatostatin gene. Science, 244, 168–71.

    Article  Google Scholar 

  • Spiess, J. and Noe, B.D. (1985) Processing of an anglerfish somatostatin precursor to a hydroxylysine-containing somatostatin-28. Proc. Natl. Acad. Sci. U.S.A., 82, 277–81.

    Article  Google Scholar 

  • Stefan, Y., Ravazzola, M. and Orci, L. (1981) Primitive islets contain two populations of cells with differing glucagon immunoreactivity. Diabetes, 30, 192–5.

    Article  Google Scholar 

  • Steiner, D.F., Kemmler, W., Tager, H.S. and Peterson, J.P. (1974) Proteolytic processing in the biosynthesis of insulin and other proteins. Fed. Proc., 33, 2105–15.

    Google Scholar 

  • Stensiö, E. (1968) The cyclostome with special reference to the diphyletic origin of the Petromyzontida and Myxinoidea. 4th Nobel Symp., 13–71.

    Google Scholar 

  • Sundby, F. (1976) Species variations in the primary structure of glucagon. Metabolism (Suppl. 1), 25, 1319–21.

    Article  Google Scholar 

  • Tager, H.S. and Steiner, D.F. (1973) Isolation of a glucagon-containing peptide: Primary structure of a possible fragment of proglucagon. Proc. Natl. Acad. Sci. U.S.A., 70, 2321–5.

    Article  Google Scholar 

  • Takeuchi, T. and Yamada, T. (1985) Isolation of a cDNA clone encoding pancreatic polypeptide. Proc. Natl. Acad. Sci. U.S.A., 82, 1536–9.

    Article  Google Scholar 

  • Tavianini, M.A., Hayes, T.E., Magazin, M.D., Minth, C.D. and Dixon, J.E. (1984) Isolation, characterization and DNA sequence of the rat somatostatin gene. J. Biol. Chem., 259, 11798–803.

    Google Scholar 

  • Tatemoto, K. (1982) Isolation and characterization of peptide YY (PYY), a candidate gut hormone that inhibits pancreatic exocrine secretion. Proc. Natl. Acad. Sci. U.S.A., 79, 2514–18.

    Article  Google Scholar 

  • Tatemoto, K., Carlquist, M. and Mutt, V. (1982) Neuropeptide Y- a novel brain peptide with structural similarities to peptide YY and pancreatic polypeptide. Nature, Lond., 296, 659–60.

    Article  Google Scholar 

  • Thim, L., Hansen, M.T., Norris, K., Hoegh, I., Boel, E., Forstrom, J., Ammerer, G. and Fiil, N. (1986) Secretion and processing of insulin precursors in yeast. Proc. Natl. Acad. Sci. U.S.A., 83, 6766–70.

    Article  Google Scholar 

  • Thim, L. and Moody, A.J. (1982) Purification and chemical characterization of a glicentin-related pancreatic peptide (proglucagon fragment) from porcine pancreas. Biochim. Biophys. Acta., 703, 134–41.

    Article  Google Scholar 

  • Uy, R. and Wold, F. (1977) Posttranslational covalent modification of protein. Science, 198, 890–96.

    Article  Google Scholar 

  • von Heijne, G. (1983) Patterns of amino acids near signal-sequence cleavage sites. Eur. J. Biochem., 133, 17–21.

    Article  Google Scholar 

  • Wallace, E.F., Weber, E., Barchas, J.D. and Evans, C.J. (1984) A putative processing enzyme from Aplysia that cleaves dynorphin A at the single arginine residue. Biochem. Biophys. Res. Commun., 119, 415–22.

    Article  Google Scholar 

  • Wold, F.A. (1981) In vivo chemical modification of proteins (post-translational modification). Annu. Rev. Biochem., 50, 783–814.

    Article  Google Scholar 

  • Wolfe, P.B. and Wickner, W. (1984) Bacterial leader peptidase, a membrane protein without a leader peptide, uses the same export pathway as pre-secretory proteins. Cell, 36, 1067–72.

    Article  Google Scholar 

  • Yamamoto, H., Nata, K. and Okamoto, H. (1986) Mosaic evolution of prepropancreatic polypeptide. J. Biol. Chem., 261, 6156–9

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Chapman and Hall

About this chapter

Cite this chapter

Conlon, J.M. (1989). Biosynthesis of regulatory peptides — evolutionary aspects. In: Holmgren, S. (eds) The Comparative Physiology of Regulatory Peptides. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0835-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0835-2_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6862-8

  • Online ISBN: 978-94-009-0835-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics