Skip to main content

Abstract

The role of chemical transmission in the signalling between neurones and their target cells is now largely taken for granted. Until recently, the number of chemicals thought to be neurotransmitters, or potential neurotransmitters, was relatively small. In the peripheral autonomic nervous system, most neurotransmission could be ascribed to the release of acetylcholine, noradrenaline (or in some cases, adrenaline), or a non-adrenergic non-cholinergic ‘third’ transmitter, whose identity was unknown (Campbell, 1970, 1987; Furness et al, 1987a). Over the last ten years, however, immunohistochemical and biochemical techniques have revealed that very many different substances, which may act as neurotransmitters, are found within the nervous system. Prominent among these substances are the neuropeptides, which are still being discovered and characterized at a rapid rate. It was quickly apparent that some neuropeptides, such as somatostatin (SST), vasoactive intestinal peptide (VIP) and enkephalin occurred in neurones which were already known to be noradrenergic or cholinergic (Hökfelt et al., 1977a; Di Giulio et al., 1978; Schultzberg et al., 1978, 1979; Glazer and Basbaum, 1980; Lundberg et al., 1980, 1982b; Wilson et al., 1980; Lundberg, 1981). Now it is rapidly becoming accepted that individual neurones may contain several different potential neurotransmitters, especially neuropeptides. Many aspects of the co-existence of regulatory peptides in vertebrate and invertebrate neurones have been reviewed extensively (Chan-Palay and Palay, 1984; Hökfelt et al., 1986).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agnati, L.F., Fuxe, K., Benfenati, F., Battistini, N., Härfstrand, A., Tatemoto, A., Hökfelt, T. and Mutt, V. (1983) Neuropeptide Y in vitro selectively increases the number of α2-adrenergic binding sites in membranes of the medulla oblongata of the rat. Acta Physiol. Scand. 118, 293–6.

    Google Scholar 

  • Alm, P., Alumets, J., Håkanson, R., Owman, C., Sjöberg, N.-O., Sundler, F. and Walles, B. (1980) Origin and distribution of VIP (vasoactive intestinal polypeptide)-nerves in the genito-urinary tract. Cell Tissue Res. 205 337–47.

    Google Scholar 

  • Andersson, P.-O., Bloom, S.R., Edwards, A.V. and Järhult, J. (1982) Effects of stimulation of the chorda tympani in bursts on submaxillary responses in the cat. J. Physiol. (Lond.) 322, 469–83.

    Google Scholar 

  • Araujo, S.M. and Collier, B. (1987) Effect of endogenous opioid peptides on acetylcholine release from the cat superior cervical ganglion: selective effect of a heptapeptide. J Neurosci. 7 1698–704.

    Google Scholar 

  • Ariano, M.J. and Kenny, S.L. (1985) Peptide coincidence in rat superior cervicalganglion. Brain Res. 340, 181–5.

    Google Scholar 

  • Aurbach, G.D. (1982) Polypeptide and amine hormone regulation of adenylatecyclase. Annu. Rev. Physiol. 44, 653–66.

    Google Scholar 

  • Beintema, J.J. (1977) Orthologonous nature of mammalian insulin genes. J. Molec. Evol. 9 363–6.

    Google Scholar 

  • Bentley, P.J. (1982) Comparative Vertebrate Endocrinology 2nd edn, Cambridge University Press, Cambridge.

    Google Scholar 

  • Berg, D.K. (1984) New neuronal growth factors. Annu. Rev. Neurosci. 7, 149–70.

    Google Scholar 

  • Bevan, J.A. and Brayden, J.E. (1987) Nonadrenergic neural vasodilator mechanisms. Circ. Res. 60, 309–26.

    Google Scholar 

  • Biancani, P., Walsh, J. and Behar, J. (1985) Vasoactive intestinal peptide: a neurotransmitter for relaxation of the rabbit internal anal sphincter. Gastroenterology, 89, 867–74.

    Google Scholar 

  • Bishop, C.A., Wine, J.J., Nagy, F. and O’Shea, M.R. (1987) Physiological consequences of a peptide cotransmitter in a crayfish nerve-muscle preparation. J. Neurosci. 7, 1769–79.

    Google Scholar 

  • Björklund, H., Hökfelt, T., Goldstein, M., Terenius, L. and Olson, L. (1985) Appearance of the noradrenergic markers tyrosine hydroxylase and neuropeptide Y in cholinergic nerves of the iris following sympathectomy. J. Neurosci., 5, 1633–43.

    Google Scholar 

  • Black, I.B., Adler, J.E., Dreyfus, C.F., Jonakait, G.M., Katz, D.M., Lagamma, E.F. and Markey, K.M. (1984) Neurotransmitter plasticity at the molecular level. Science 225, 1266–70.

    Google Scholar 

  • Blundell, T.L. and Wood, S.P. (1975) Is the evolution of insulin Darwinian or due to selectively neutral mutation? Nature, Lond. 257, 197–203.

    Google Scholar 

  • Bowers, C.W., Jan, L.Y. and Jan, Y.N. (1986) A substance P-like peptide in bullfrog autonomic nerve terminals: anatomy, biochemistry and physiology. Neuroscience 19, 343–56.

    Google Scholar 

  • Brayden, J.E. and Bevan, J. A. (1985) Neurogenic muscarinic vasodilation in the cat: an example of endothelial cell-independent cholinergic relaxation. Circ. Res. 56, 205–11

    Google Scholar 

  • Brayden, J.E. and Bevan, J.A. (1986) Evidence that vasoactive intestinal polypeptide (VIP) mediates neurogenic vasodilation of feline cerebral arteries. Stroke 17, 1189–92.

    Google Scholar 

  • Brenneman, D.E., Neale, E.A., Foster, G.A., D’Autremont, S.W. and Westbrook, G.L. (1987) Nonneuronal cells mediate neurotrophic action of vasoactive intestinal peptide. J. Cell Biol. 104, 1603–10.

    Google Scholar 

  • Campbell, G. (1970) Autonomic nervous supply to effector tissues. In Smooth Muscle (eds E. Bülbring, A. Brading, A. Jones and T. Tomita), Edward Arnold, London, pp. 451–95.

    Google Scholar 

  • Campbell, G. (1987) Cotransmission. Annu. Rev. Pharmacol. Toxicol. 27, 51–70.

    Google Scholar 

  • Campbell, G., Gibbins, I.L., Morris, J.L., Furness, J.B., Costa, M., Oliver, J.R., Beardsley, A.M. and Murphy, R. (1982) Somatostatin is contained in and released from cholinergic nerves in the heart of the toad, Bufo marinus. Neuroscience 7 2013–23.

    Google Scholar 

  • Changeux, J.P, (1986) Co-existence of neuronal messengers and molecular selection. Progr. Brain Res. 68, 373–403.

    Google Scholar 

  • Chan-Palay, V. and Palay, S.L. (eds) (1984) Co-existence of Neuroactive Substances in Neurons John Wiley and Sons, New York.

    Google Scholar 

  • Civelli, O., Douglass, J., Goldstein, A. and Herbert, E. (1985) Sequence and expression of the rat prodynorphin gene. Proc. Natl. Acad. Sci. U.S.A. 82, 4291–5.

    Google Scholar 

  • Costa, E., Guidotti, A., Hanbauer, I., Hexum, T., Saiani, L., Stine, S. and Yang, H.-Y.T. (1981) Regulation of acetylcholine receptors by endogenous co-transmitters: studies of adrenal medulla. Fed. Proc. 40, 160–5.

    Google Scholar 

  • Costa, M. and Furness, J.B. (1984) Somatostatin is present in a subpopulation of noradrenergic nerve fibres supplying the intestine. Neuroscience 13, 911–20.

    Google Scholar 

  • Costa, M., Fumess, J.B. and Gibbins, I.L. (1986) Chemical coding of enteric neurones. Progr. Brain Res. 68, 217–39.

    Google Scholar 

  • Costa, M., Furness, J.B. and Llewellyn-Smith, I.J. (1987) Histochemistry of the enteric nervous system. In Physiology of the Gastrointestinal Tract 2nd edn (ed. L.R. Johnson), Raven Press, New York, pp. 1–40.

    Google Scholar 

  • Costa, M., Furness, J.B., Pullin, C.O. and Bornstein, J. (1985) Substance P enteric neurons mediate non-cholinergic transmission to the circular muscle of the guinea-pig intestine. Naunyn-Schmiedeberg’s Arch. Pharmacol. 328, 446–53.

    Google Scholar 

  • Crowe, R., Haven, A.J. and Burnstock, G. (1986) Intramural neurones of the guinea-pig urinary bladder: histochemical localization of putative neurotransmitters in cultures and newborn animals. J. Autonom. New. Syst. 15, 319–39.

    Google Scholar 

  • Dalsgaard, C.J., Franco-Cereceda, A., Saria, A., Lundberg, J.M., TheodorssonNorheim, E. and Hökfelt, T. (1986) Distribution and origin of substance P-and neuropeptide Y-immunoreactive nerves in the guinea-pig heart. Cell Tissue Res. 243, 477–85.

    Google Scholar 

  • Dalsgaard, C.J., Hökfelt, T., Schultzberg, M., Lundberg, J.M., Terenius, L., Dockray, G.J. and Goldstein, M. (1983a) Origin of peptide-containing fibers in the inferior mesenteric ganglion of the guinea-pig: immunohistochemical studies with antisera to substance P, enkephalin, vasoactive intestinal polypeptide, cholecystokinin and bombesin. Neuroscience 9 191–211.

    Google Scholar 

  • Dalsgaard, C.J., Vincent, S.R., Hökfelt, T., Christensson, I. and Terenius, L. (1983b) Separate origins for the dynorphin and enkephalin immunoreactive fibers in the inferior mesenteric ganglion of the guinea-pig. J. Comp. Neurol. 221 482–9.

    Google Scholar 

  • Della, N.G., Papka, R.E., Furness, J.B. and Costa, M. (1983) Vasoactive intestinal peptide-like immunoreactivity in nerves associated with the cardiovascular system of guinea-pigs. Neuroscience 9 605–19.

    Google Scholar 

  • Di Giulio, A.M., Yang, H.-Y.T., Lutold, B., Fratta, W., Hong, J. and Costa, E. (1978) Characterization of enkephalin-like material extracted from sympathetic ganglia. Neuropharmacology 17 989–92.

    Google Scholar 

  • Dixon, J.S. and Gosling, J. A. (1972) The distribution of autonomic nerves in the musculature of the rat vas deferens. A light and electron microscope investigation. J. Comp. Neurol. 146, 175–88.

    Google Scholar 

  • Donnerer, J., Holzer, P. and Lembeck, F. (1984) Release of dynorphin, somatostatin and substance P from the vascularly perfused small intestine of the guinea-pig during peristalsis. Br. J. Pharmacol. 83 919–25.

    Google Scholar 

  • Donnerer, J., Meyer, D.K., Holzer, P. and Lembeck, F. (1985) Release of cholecystokinin-immunoreactivity into the vascular bed of the guinea-pig small intestine during peristalsis. Naunyn-Schmiedeberg’s Arch. Pharmacol. 328, 324–6.

    Google Scholar 

  • Dores, R.M. and Akil, H. (1987) Species-specific processing of prodynorphin in the posterior pituitary of mammals. Endocrinology 120, 230–8.

    Google Scholar 

  • Dun, N.J. (1983) Peptide hormones and transmission in sympathetic ganglia. In Autonomic Ganglia (ed. L.G. Elfvin), John Wiley & Sons, Chichester, pp. 345–66.

    Google Scholar 

  • Dynan, W.K.S. and Tijan, R. (1985) Control of eukaryotic messenger RNA synthesis by sequence specific DNA-binding proteins. Nature, Lond. 316, 774–8.

    Google Scholar 

  • Eiden, L.E., Loumaye, E., Sherwood, N. and Eskay, R.L. (1982) Two chemically and immunologically distinct forms of luteinizing hormone-releasing hormone are differentially expressed in frog neural tissues. Peptides 3 323–7.

    Google Scholar 

  • Eisenberg, J.F. (1981) The Mammalian Radiations, An Analysis of Trends in Evolution, Adaptation, and Behaviour, University of Chicago Press, Chicago.

    Google Scholar 

  • Elde, R., Haber, S., Ho, R., Holets, V., De Lanerolle, N., Maley, B., Micevych, P. and Seybold, V. (1980) Interspecies conservation and variation in peptidergic neurones. Peptides, 1, (Suppl. 1), 21–6.

    Google Scholar 

  • Eng, J., Du, B.H., Raufman, J.P. and Yalow, R.S. (1986) Purification and amino acid sequences of dog, goat and guinea-pig VIPs. Peptides, 7, (Suppl. 1), 17–20.

    Google Scholar 

  • Erichsen, J., Reiner, A. and Karten, H. (1982) Co-occurrence of substance P-like and Leu-enkephalin-like immunoreactivities in neurons and fibres of avian nervous system. Nature, Lond. 295, 407–10.

    Google Scholar 

  • Fahrenkrug, J. (1979) Vasoactive intestinal polypeptide. Measurement, distribution and putative neurotransmitter function. Digestion 19, 149–69.

    Google Scholar 

  • Fahrenkrug, J. (1982) VIP as a neurotransmitter in the peripheral nervous system. In Vasoactive Intestinal Peptide (ed. S.I. Said), Raven Press, New York, pp. 361–72.

    Google Scholar 

  • Fahrenkrug, J., Haglund, U., Jodal, M., Lundgren, O., Olbe, L. and Schaffalitzky de Muckadell, O.B. (1978) Nervous release of vasoactive intestinal polypeptide in the gastrointestinal tract of cats: possible physiological implications. J. Physiol (Lond.) 284 291–305.

    Google Scholar 

  • Fontaine, B., Klarsfeld, A., Hökfelt, T. and Changeux, J.P. (1986) Calcitonin generelated peptide, a peptide present in spinal cord motoneurons increases the number of acetylcholine receptors in primary cultures of chick embryo myotubes. Neurosci. Lett. 71, 59–65.

    Google Scholar 

  • Fried, G., Terenius, L., Brodin, E., Efendic, S., Dockray, G., Fahrenkrug, J., Goldstein, M. and Hökfelt, T. (1986) Neuropeptide Y, enkephalin and noradrenaline co-exist in sympathetic neurons innervating the bovine spleen. Cell Tissue Res. 243, 495–508.

    Google Scholar 

  • Fried, G., Terenius, L., Hökfelt, T. and Goldstein, M. (1985) Evidence for differential localization of noradrenaline and neuropeptide Y in neuronal storage vesicles isolated from rat vas deferens. J. Neurosci. 5, 450–8.

    Google Scholar 

  • Fukuda, H., Hosoki, E., Ishida, Y. and Moritoki, H. (1985) Opioid receptor types on adrenergic nerve terminals of rabbit ear artery. Br. J. Pharmacol. 86 539–45.

    Google Scholar 

  • Furness, J.B. and Costa, M. (1980) Types of nerves in the enteric nervous system. Neuroscience 5, 1–20.

    Google Scholar 

  • Fumess, J.B. and Costa, M. (1987) The Enteric Nervous System Churchill Livingstone, Edinburgh, 290pp.

    Google Scholar 

  • Fumess, J.B., Costa, M., Gibbins, I.L., Llewellyn-Smith, I.J. and Oliver, J.R. (1985) Neurochemically similar myenteric and submucous neurons directly traced to the mucosa of the small intestine. Cell Tissue Res. 241, 155–63.

    Google Scholar 

  • Fumess, J.B., Costa, M., Morris, J.L. and Gibbins, I.L. (1987a) Novel neurotransmitters and the chemical coding of neurons. In Advances in Physiological Research (eds H. McLennan, J.R. Ledsome, C.H.S. Mcintosh and D.R. Jones), Plenum Press, New York, pp. 143–65.

    Google Scholar 

  • Furness, J.B., Costa, M., Rökaeus, Å, McDonald, T.J. and Brooks, B. (1987b) Galanin-immunoreactive neurons in the guinea-pig small intestine: their projections and relationships to other enteric neurons. Cell Tissue Res. 250, 607–15.

    Google Scholar 

  • Futuyama, D. (1986)Evolutionary Biology 2nd edn, Sinauer, Sunderland.

    Google Scholar 

  • Gibbins, I.L., Campbell, G., Morris, J.L., Nilsson, S. and Murphy, R. (1987c) Pathway-specific connections between peptide-containing preganglionic and postganglionic neurons in the vagus nerve of the toad (Bufo marinus). J. Autonom. Nerv. System. 20, 43–55.

    Google Scholar 

  • Gibbins, I.L., Furness, J.B. and Costa, M. (1987a) Pathway-specific pattern of the co-existence of substance P, calcitonin gene-related peptide, cholecystokinin and dynorphin in neurons of the dorsal root ganglia of the guinea-pig. Cell Tissue Res. 248, 417–37.

    Google Scholar 

  • Gibbins, I.L. and Morris, J.L. (1987a) Co-existence of neuropeptides in sympathetic cranial autonomic and sensory neurones innervating the iris of the guinea-pig. J. Autonom. New. Syst. 21, 67–82.

    Google Scholar 

  • Gibbins, I.L. and Morris, J.L. (1988) Co-existence of immunoreactivity to neuropeptide Y and vasoactive intestinal peptide in non-noradrenergic axons innervating guinea-pig cerebral arteries after sympathectomy. Brain Res. 444, 402–6.

    Google Scholar 

  • Gibbins, I.L. and Morris, J.L. (1987b) Four immunohistochemically identifiable populations of neurons containing opioid peptides in the facial skin of guinea-pigs. Neurosci. Lett. Suppl 27 S75.

    Google Scholar 

  • Gibbins, I.L., Morris, J.L., Furness, J.B. and Costa, M. (1987d) Chemical coding of autonomic neurones. Exp. Brain Res. 16, 23–7.

    Google Scholar 

  • Gibbins, I.L., Morris, J.L., Furness, J.B. and Costa, M. (1988) Innervation of systemic blood vessels. In Non-adrenergic Innervation of Blood Vessels Vol. II, Regional Innervation (eds G. Burnstock and S. Griffith), CRC Press, Boca Raton, pp. 1–36.

    Google Scholar 

  • Gibbins, I.L., Wattchow, D. and Coventry, B. (1987b) Two immunohistochemically identified populations of calcitonin gene-related peptide (CGRP)-immunoreactive axons in human skin. Brain Res. 414, 143–8.

    Google Scholar 

  • Gibson, S.J., Polak, J.M., Bloom, S.R., Sabate, I.M., Mulderry, P.M., Ghatei, M.A., McGregor, G.P., Morrison, J.F.B., Kelly, J.J., Evans, R.M. and Rosenfeld, M.G. (1984) Calcitonin gene-related peptide immunoreactivity in the spinal cord of man and eight other species. J. Neurosci. 4, 3101–11.

    Google Scholar 

  • Glazer, E.J. and Basbaum, A.I. (1980) Leucine enkephalin: localization in and axoplasmic transport by sacral parasympathetic preganglionic neurons. Science 208, 1479–81.

    Google Scholar 

  • Goodman, M. (1981) Decoding the pattern of protein evolution. Progr. Biophys. Molec. Biol. 38, 105–64.

    Google Scholar 

  • Goodman, M., Miyamoto, M.M. and Czelusnak, J. (1987) Pattern and process in vertebrate phylogeny revealed by coevolution of molecules and morphologies. In Molecules and Morphology in Evolution: Conflict or Compromise? (ed. C. Patterson), Cambridge University Press, Cambridge, pp. 141–76.

    Google Scholar 

  • Gosling, J.A. and Dixon, J.S. (1972) Differences in the manner of autonomic innervation of the muscle layers of the guinea-pig ductus deferens. J. Anat. 112, 81–91.

    Google Scholar 

  • Goyal, R.K., Rattan, S. and Said, S.I. (1980) VIP as a possible neurotransmitter of non-cholinergic non-adrenergic inhibitory neurones. Nature, Lond. 288, 378–80

    Google Scholar 

  • Grider, J.R., Cable, M.B., Said, S.I. and Makhlouf, G.M. (1985) Vasoactive intestinal peptide as a neural mediator of gastric relaxation. Am. J. Physiol. 248, G73-G78.

    Google Scholar 

  • Gulbenkian, S., Merighi, A., Wharton, J., Varndell, I.M. and Polak, J.M. (1986) Ultrastructural evidence for the co-existence of calcitonin gene-related peptide and substance P in secretory vesicles of peripheral nerves in the guinea-pig. J. Neurocytol. 15 535–42.

    Google Scholar 

  • Habener, J. (1985) Regulation of polypeptide-hormone biosynthesis at the level of the genome. Am. J. Physiol 249, C191-C199.

    Google Scholar 

  • Hakanson, R., Wahlestedt, C., Ekblad, E., Edvinsson, L. and Sundler, F. (1986) Neuropeptide Y: co-existence with noradrenaline. Functional implications. Progr. Brain Res. 68, 279–87.

    Google Scholar 

  • Häppölä, O., Soinila, S., Päivärinta, H. and Panula, P. (1987) (Met5)-Enkephalin- Arg6-Phe7- and (Met5)-enkephalin-Arg6-Gly7-Leu8 -immunoreactive nerve fibres and neurons in the superior cervical ganglion of the rat. Neuroscience 21, 283–303.

    Google Scholar 

  • Heym, C., Reinecke, M., Weihe, E. and Forssmann, W.G. (1984) Dopaminesβ-hydroxylase-, neurotensin-, substance P-, vasoactive intestinal polypeptide-, and enkephalin-immunohistochemistry of paravertebral and prevertebral ganglia in the cat. Cell Tissue Res. 235, 411–18.

    Google Scholar 

  • Hirota, N., Kuraishi, Y., Hind, Y., Sato, Y., Satoh, M. and Takagi, H. (1985) Met-enkephalin and morphine but not dynorphin inhibit noxious stimuliinduced release of substance P from rabbit dorsal horn in situ. Neuropharmacology 24, 567–70.

    Google Scholar 

  • Hobart, P., Crawford, R., Shen, C., Pictet, R. and Rutter, W. (1980) Cloning and sequence analysis of cDNAs encoding two distinct somatostatin precursors found in the endocrine pancreas of anglerfish. Nature, Lond. 288, 137–41.

    Google Scholar 

  • Hökfelt, T., Elfvin, L.G., Elde, R., Schultzberg, M., Goldstein, M. and Luft, R. (1977a) Occurrence of somatostatin-like immunoreactivity in some peripheral sympathetic noradrenergic neurones. Proc. Natl. Acad. Sci., U.S.A. 74, 3587–91.

    Google Scholar 

  • Hökfelt, T., Elfvin, L.-G., Schultzberg, M., Goldstein, M. and Nilsson, G. (1977b) On the occurrence of substance P-containing fibres in sympathetic ganglia: Immunohistochemical evidence. Brain Res. 132, 29–41.

    Google Scholar 

  • Hökfelt, T., Fuxe, K. and Pernow, B. (eds) (1986) Co-existence of neuronal messengers: a new principle in chemical transmission. Progr. Brain Res. 68, 411pp.

    Google Scholar 

  • Hökfelt, T., Johansson, O. and Goldstein, M. (1984) Chemical anatomy of the brain. Science 225, 1326–34.

    Google Scholar 

  • Hökfelt, T., Schultzberg, M., Elde, R., Nilsson, G., Terenius, L., Said, S. and Goldstein, M. (1978) Peptide neurones in the peripheral tissues including the urinary tract: immunohistochemical studies. Acta Pharmacol. Toxicol, Suppl. II 43, 79–89.

    Google Scholar 

  • Hökfelt, T., Schultzberg, M., Lundberg, J.M. Fuxe, K., Mutt, V., Fahrenkrug, J. and Said, S. I. (1982) Distribution of vasoactive intestinal polypeptide in the central and peripheral nervous systems as revealed by immunohistochemistry. In Vasoactive Intestinal Peptide (ed. S.I. Said), Raven Press, New York, pp. 65–90.

    Google Scholar 

  • Hoist, J.J., Fahrenkrug, J., Knuhtsen, S., Jensen, S.L., Poulsen, S.S. and Nielsen, O.V. (1984) Vasoactive intestinal polypeptide (VIP) in the pig pancreas: role of VIPergic nerves in the control of fluid and bicarbonate secretion. Regul Pept. 8, 245–59.

    Google Scholar 

  • Horikawa, S., Takai, T., Toyosato, M., Takahashi, H., Noda, M., Kakidani, H., Kubo, T., Hirose, T., Wayama, S., Hayashida, H., Miyata, T. and Numa, S. (1983) Isolation and structural organization of the human preproenkephalin B gene. Nature, Lond. 306, 611–14.

    Google Scholar 

  • Horuk, R., Blundell, T.R., Lazarus, N.R., Neville, R.W.J., Stone, D. and Wollmer, A. (1980) A monomelic insulin from the porcupine (Hystrix cristata) an old world hystricomorph. Nature, Lond. 286, 822–4.

    Google Scholar 

  • Hua, X.-Y., Theodorsson-Norheim, E., Brodin, E., Lundberg, J.M. and Hökfelt, T. (1985) Multiple tachykinins neurokinin A, neuropeptide K and substance P) in capsaicin-sensitive sensory neurons in the guinea-pig. Regul., Pept. 13, 1–19.

    Google Scholar 

  • Huang, W.M., Gu, J., Blank, M.A., Allen, J.M., Bloom, S.R. and Polak, J.M. (1984 Peptide-immunoreactive nerves in the mammalian female genital tract. Histochem. J. 16, 1297–1310.

    Google Scholar 

  • Illes, P., Ramme, D. and Busse, R. (1987) Photoelectric measurement of neurogenic vasoconstriction in jejunal branches of the rabbit mesenteric artery reveals the presence of presynaptic opioid δ-receptors. Naunyn-Schmiedeberg’s Arch. Pharmacol. 335, 701–4.

    Google Scholar 

  • Jan, L.Y. and Jan, Y.N. (1982) Peptidergic transmission in sympathetic ganglia of the frog. /. Physiol. (Lond.) 327 219–46.

    Google Scholar 

  • Jan, L.Y., Jan, Y.N. and Brownfield, M.S. (1980) Peptidergic transmitters in synaptic boutons of sympathetic ganglia. Nature, Lond. 288, 380–2.

    Google Scholar 

  • Jan, Y.N., Bowers, C.W., Branton, D., Evans, L. and Jan, L.Y. (1983) Peptides in neuronal function: studies using frog autonomic ganglia. Cold Spring Harbor Symp. Quant. Biol. 43, 363–74.

    Google Scholar 

  • Jänig, W., Krauspe, R. and Wiedersatz, G. (1983) Activation of postganglionic vasoconstrictor neurones supplying skeletal muscle by stimulation of arterial chemoreceptors via non-nicotinic synaptic mechanisms in sympathetic ganglia. Pflüger’s Arch. 396, 95–100.

    Google Scholar 

  • Järvi, R., Helen, P., Pelto-Huikko, M. and Hervonen, A. (1986) Neuropeptide Y (NPY)-like immunoreactivity in rat sympathetic neurons and small granule-containing cells. Neurosci. Lett. 67 223–7.

    Google Scholar 

  • Jeffreys, A.J., Harris, S., Barrie, P. A., Wood, D., Blanchetot, A. and Adams, S.M. (1983) Evolution of gene families: the globin genes. In Evolution from Molecules to Men (ed. D.S. Bendall), Cambridge University Press, Cambridge, pp. 175–95.

    Google Scholar 

  • Jones, S. W. (1987) Chicken II luteinizing hormone-releasing hormone inhibits the M current of bullfrog sympathetic neurones. Neurosci. Lett. 80, 180–4.

    Google Scholar 

  • Ju, G., Hökfelt, T., Brodin, E., Fahrenkrug, J., Fischer, J.A., Frey, P., Elde, R.P. and Brown, J.C. (1987) Primary sensory neurons of the rat showing calcitonin gene-related peptide immunoreactivity and their relation to substance P-, somatostatin-, galanin-, vasoactive intestinal polypeptide- and cholecysto-kinin-immunoreactive ganglion cells. Cell Tissue Res. 247, 417–31.

    Google Scholar 

  • Kakidani, H., Furstani, Y., Takahashi, H., Noda, M., Morimoto, Y., Hirose, T., Asai, M., Inayama, S., Nakanishi, S. and Numa, S. (1982) Cloning and sequence analysis of cDNA for procine β-neo-endorphin/dynorphin precursor. Nature, Lond. 298, 245–9.

    Google Scholar 

  • Keast, J.R. (1987) Mucosal innervation and control of water and ion transport in the intestine. Rev. Physiol. Biochem. Pharmacol. 109, 1–59.

    Google Scholar 

  • Kessler, J. A. (1985) Parasympathetic, sympathetic and sensory interactions in the iris: nerve growth factor regulates cholinergic ciliary ganglion innervation in vivo. J. Neurosei. 5, 2719–25.

    Google Scholar 

  • Kessler, J.A. and Black, L.B. (1983) Mechanisms governing peptidergic phenotypic expression and development. In Brain Peptides (eds D.T. Krieger, M.J. Brownstein and J.B. Martin), John Wiley & Sons, New York, pp. 229–47.

    Google Scholar 

  • Kilpatrick, D.L. Howells, R.D., Lahm, H.W. and Udenfriend, S. (1983) Evidence for a Proenkephalin-like precursor in amphibian brain. Proc. Natl. Acad. Sci. U.S.A. 80 5772–5.

    Google Scholar 

  • Kimura, M. (1983) The Neutral Theory of Molecular Evolution Cambridge University Press, Cambridge.

    Google Scholar 

  • Konishi, S., Tsunoo, A. and Otsuka, M. (1981) Enkephalin as a transmitter for presynaptic inhibition in sympathetic ganglia. Nature (Lond.) 294, 80–2.

    Google Scholar 

  • Krause, J.E., Chirgwin, J.M., Carter, M.S., Xu, Z.S. and Hershey, A.D. (1987) Three rat preprotachykinin mRNAs encode the neuropeptides substance P and neurokinin A. Proc. Natl Acad. Sci. U.S.A. 84, 881–5.

    Google Scholar 

  • Krukoff, T.L., Ciriello, J. and Calaresu, F.R. (1985) Segmental distribution of peptide-like immunoreactivity in cell bodies of the thoracolumbar sympathetic nuclei of the cat. J. Comp. Neurol. 240, 90–102.

    Google Scholar 

  • Kummer, W. (1987) Galanin- and neuropeptide Y-like immunoreactivities coexist in paravertebral sympathetic neurones of the cat. Neurosci. Lett. 78, 127–31.

    Google Scholar 

  • Kuramoto, H. and Fujita, T. (1986) An immunohistochemical study of calcitonin gene-related peptide (CGRP)-containing nerve fibres in the sympathetic ganglia of bullfrogs. Biomed. Res. 7, 349–57.

    Google Scholar 

  • Kurtén, B. (1971) The Age of Mammals Columbia University Press, New York.

    Google Scholar 

  • Leah, J.D., Cameron, A.A., Kelly, W.A. and Snow, P.J. (1985b) Co-existence of peptide immunoreactivity in sensory neurons of the cat. Neuroscience 16, 683–90.

    Google Scholar 

  • Leah, J.D., Cameron, A.A. and Snow, P.J. (1985a) Neuropeptides in physiologically identified mammalian sensory neurons. Neurosci. Lett. 56, 257–63.

    Google Scholar 

  • Lee, Y., Kawai, Y., Shiosaka, K., Kiyama, H., Hillyard, C.J., Girgis, S., Maclntyre, I., Emson, P.C. and Tohyama, M. (1985) Co-existence of calcitonin gene-related peptide and substance P-like peptide in single cells of the trigeminal ganglion of the rat: immunohistochemical analysis. Brain Res. 330, 194–6.

    Google Scholar 

  • Le Greve, P., Nyberg, F., Terenius, L. and Hokfelt, T. (1985) Calcitonin generelated peptide is a potent inhibitor of substance P degradation. Eur. J. Pharmacol. 115, 309–11.

    Google Scholar 

  • Lembeck, F., Donnerer, J. and Barthó, L. (1982) Inhibition of neurogenic vasodilation and plasma extravasation by substance P antagonists, somatostatin and D-Met2, Pro5-enkephalinamide. Eur. J. Pharmacol. 85, 171–6.

    Google Scholar 

  • Lindberg, I. and White, L. (1986) Reptilian enkephalins: implications for the evolution of proenkephalin. Arch. Biochem. Biophys. 245, 1–7.

    Google Scholar 

  • Linder, S., Barkhem, T., Norberg, A., Persson, H., Schalling, M., Hökfelt, T. and Magnusson, G. (1987) Structure and expression of the gene encoding the vasoactive intestinal peptide precursor. Proc. Natl. Acad. Sci. U.S.A. 84, 605–9.

    Google Scholar 

  • Lindh, B., Hökfelt, T., Elfvin, L.-G., Terenius, L., Fahrenkrug, J., Elde, R. and Goldstein, M. (1986a) Topography of NPY-, somatostatin-, and VIP- immunoreactive neuronal subpopulations in the guinea-pig celiac-superior mesenteric ganglion and their projection to the pylorus. J. Neurosci. 6, 2371–83.

    Google Scholar 

  • Lindh, B., Staines, W., Hökfelt, T., Terenius, L. and Salvaterra, P.M. (1986b) Immunohistochemical demonstration of choline acetyltransferase immunoreactive preganglionic nerve fibres in guinea-pig autonomic ganglia. Proc. Natl. Acad. Sci. U.S.A. 83, 5316–20.

    Google Scholar 

  • Lomedico, P., Rosenthal, N., Efstratiadis, A., Gilbert, W., Kolodner, R. and Tizard, R. (1979) The structure and evolution of the two non-allelic rat preproinsulin genes. Cell 18 545–58.

    Google Scholar 

  • Lundberg, J.M. (1981) Evidence for the co-existence of vasoactive intestinal polypeptide (VIP) and acetylcholine in neurons of cat exocrine glands. Morphological, biochemical and functional studies. Acta Physiol. Scand. Suppl. 496, 1–57.

    Google Scholar 

  • Lundberg, J., Fahrenkrug, J., Hökfelt, T., Martling, C.-R., Larsson, O., Tatemoto, K. and Änggård, A. (1984a) Coexistence of peptide HI (PHI) and VIP in nerves regulating blood flow and bronchial smooth muscle tone in various animals including man. Peptides 5 593–606.

    Google Scholar 

  • Lundberg, J.M., Franco-Cereceda, A., Hua, X.-Y., Hökfelt, T. and Fischer, J. (1985b) Co-existence of substance P and calcitonin gene-related peptide immunoreactivities in sensory nerves in relation to cardiovascular and bronchoconstrictor effects of capsaicin. Eur. J. Pharmacol 108, 315–19.

    Google Scholar 

  • Lundberg, J.M., Fried, G., Fahrenkrug, J., Holmstedt, B., Hökfelt, T., Lagerkrantz, H., Lundgren, G. and Änggård, A. (1981) Subcellular fractionation of cat submandibular gland: comparative studies on the distribution of acetylcholine and vasoactive intestinal polypeptide (VIP). Neuroscience 6, 1001–10.

    Google Scholar 

  • Lundberg, J.M., Hedlund, B. and Bartfai, T. (1982a) Vasoactive intestinal polypeptide enhances muscarinic ligand binding in cat submandibular salivary gland. Nature, Lond. 295, 147–9.

    Google Scholar 

  • Lundberg, J.M. and Hökfelt, T. (1986) Multiple co-existence of peptides and classical transmitters in peripheral autonomic and sensory neurones - functional and pharmacological implications. Progr. Brain Res. 68, 241–62.

    Google Scholar 

  • Lundberg, J.M., Hökfelt, T., Änggård, A., Kimmel, J., Goldstein, M. and Markey, K. (1980) Coexistence of an avian pancreatic polypeptide (APP) immunoreactive substance and catecholamines in some peripheral and central neurons. Acta Physiol Scand. 110, 107–10.

    Google Scholar 

  • Lundberg, J., Hua, X.-Y. and Franco-Cereceda, A. (1984b) Effects of neuropeptide Y (NPY) on mechanical activity and neurotransmission in the heart, vas deferens and urinary bladder of the guinea-pig. Acta Physiol Scand. 121, 325–32.

    Google Scholar 

  • Lundberg, J.M., Rudehill, A., Sollevi, A., Theodorsson-Norheim, E. and Hamberger, B. (1986) Frequency- and reserpine-dependent chemical coding of sympathetic transmission: differential release of noradrenaline and neuropeptide Y from pig spleen. Neurosci. Lett. 63, 96–100.

    Google Scholar 

  • Lundberg, J.M., Saria, A., Franco-Cereceda, A., Hökfelt, T., Terenius, L. and Goldstein, M. (1985a) Differential effects of reserpine and 6-hydroxy-dopamine on neuropeptide Y (NPY) and noradrenaline in peripheral neurones. Naunyn-Schmiedeberg’s Arch. Pharmacol 328, 331–40.

    Google Scholar 

  • Lundberg, J.M., Terenius, L., Hökfelt, T., Martling, C.R., Tatemoto, K., Mutt, V., Polak, J.M., Bloom, S.R. and Goldstein, M. (1982b) Neuropeptide Y (NPY)-like immunoreactivity in peripheral noradrenergic neurons and effects of NPY on sympathetic function. Acta Physiol Scand. 116, 477–80.

    Google Scholar 

  • Macrae, I.M., Furness, J.B. and Costa, M. (1986) Distribution and subgroups of noradrenaline neurons in the coeliac ganglion of the guinea-pig. Cell Tissue Res. 244, 173–80.

    Google Scholar 

  • Martens, G.J.M. and Herbert, E. (1984) Polymorphism and absence of Leuenkephalin sequences in proenkephalin genes in Xenopus laevis. Nature, Lond. 310, 251–4.

    Google Scholar 

  • McKenna, M.C. (1987) Molecular and morphological analysis of high-level mammalian interrelationships. In Molecules and Morphology in Evolution: Conflict or Compromise? (ed. C. Patterson), Cambridge University Press, Cambridge, pp. 55–93.

    Google Scholar 

  • Miller, W.C., Baxter, J.D. and Eberhardt, N.C. (1983) Peptide hormone genes: structure and evolution. In Brain Peptides (eds D.T. Krieger, M.J. Brownstein and J.B. Martin), John Wiley and Sons, New York, pp. 15–78.

    Google Scholar 

  • Montminy, M.R. and Bilezikjian, L.M. (1987) Binding of a nuclear protein to the cyclic-AMP response element of the somatostatin gene. Nature, Lond. 328 175–8.

    Google Scholar 

  • Montminy, M.R., Goodman, R.H., Horovitch, S.J. and Habener, J.F. (1984) Primary structure of the gene encoding rat preprosomatostatin. Proc. Natl. Acad. Sci. U.S.A. 81, 3337–40.

    Google Scholar 

  • Morris, J.L. and Gibbins, I.L. (1987) Neuronal co-localization of peptides, catecholamines and catecholamine-synthesizing enzymes in guinea-pig paracervical ganglia. J. Neurosci. 7, 3117–30.

    Google Scholar 

  • Morris, J.L., Gibbins, I.L., Campbell, G., Murphy, R., Fumess, J.B. and Costa, M. (1986a) Innervation of the large arteries and heart of the toad (Bufo marinus) by adrenergic and peptide-containing neurons. Cell Tissue Res. 243, 171–84.

    Google Scholar 

  • Morris, J.L., Gibbins, I.L. and Fumess, J.B. (1987) Increased dopamine-β-hydroxylase-like immunoreactivity in non-noradrenergic axons supplying the guinea-pig uterine artery after 6-hydroxy dopamine treatment. J. Autonom. Nerv. Syst. 21, 15–27.

    Google Scholar 

  • Morris, J.L., Gibbins, I.L., Furness, J.B., Costa, M. and Murphy, R. (1985) Co-localization of neuropeptide Y, vasoactive intestinal polypeptide and dynorphin in non-noradrenergic axons of the guinea-pig uterine artery. Neurosci. Lett. 62 31–7.

    Google Scholar 

  • Morris, J.L., Gibbins, I.L. and Murphy, R. (1986b) Neuropeptide Y-like immunoreactivity is absent from most perivascular noradrenergic axons in a marsupial, the brush-tailed possum. Neurosci. Lett. 71, 264–70.

    Google Scholar 

  • Morris, M., Kapoor, V. and Chalmers, J. (1987) Plasma neuropeptide Y concentration is increased after hemorrhage in conscious rats: relative contributions of sympathetic nerves and the adrenal medulla. J. Cardiovasc. Pharmacol. 9, 541–5.

    Google Scholar 

  • Mudge, A. W. (1981) Effects of chemical environment on levels of substance P and somatostatin in cultured sensory neurones. Nature, Lond. 292, 764–7.

    Google Scholar 

  • Murdoch, G.H., Franco, R., Evans, R.M. and Rosenfeld, M.G. (1983) Polypeptide hormone regulation of gene expression. J. Biol. Chem. 258, 15329–36.

    Google Scholar 

  • Nawa, H., Hirose, T., Takashima, H., Inayama, S. and Nakanishi, S. (1983) Nucleotide sequence of cloned cDNAs for two types of substance P precursors. Nature, Lond. 306, 32–6.

    Google Scholar 

  • Nawa, H., Kotani, H. and Nakanishi, S. (1984) Tissue specific generation of two preprotachykinin mRNAs from one gene by alternative RNA splicing. Nature, Lond. 312, 729–34.

    Google Scholar 

  • Nestler, E.J., Walaas, S.I. and Greengard, P. (1984) Neuronal phosphoproteins: physiological and clinical implications. Science 225 1357–64.

    Google Scholar 

  • Nilsson, J., von Euler, A. and Dalsgaard, C.-J. (1985) Stimulation of connective tissue cell growth by substance P and substance K. Nature, Lond. 315, 61–3.

    Google Scholar 

  • Nishizawa, M., Hayakawa, Y., Yanaihara, N. and Okamoto, H. (1985) Nucleotide sequence divergence and functional constraint in VIP precursor mRNA evolution between human and rat. FEBS Lett. 183, 55–9.

    Google Scholar 

  • Noda, M., Teranishi, Y., Takahashi, H., Toyosato, M., Notake, M., Nakanishi, S. and Numa, S. (1982) Isolation and structural organization of the human proenkephalin gene. Nature, Lond. 297 431–4.

    Google Scholar 

  • Pernow, J., Lundberg, J.M., Kaijser, L., Hjemdahl, P., Theodorsson-Norheim, E., Martinsson, A. and Pernow, B. (1986) Plasma neuropeptide Y-like immunoreactivity and catecholamines during various degrees of sympathetic activation in man. Clin. Physiol. 6, 561–78.

    Google Scholar 

  • Perutz, M.F. (1983) Species adaptation in a protein molecule. Molec. Biol., Evol. 1 1–28.

    Google Scholar 

  • Purves, D. and Lichtman, J. W. (1985) Principles of Neural Development Sinauer, Sunderland.

    Google Scholar 

  • Reiner, A. (1987) A VIP-like peptide co-occurs with substance P and enkephalin in cholinergic preganglionic terminals of the avian ciliary ganglion. Neurosci. Lett. 78, 22–8.

    Google Scholar 

  • Romer, A.S. (1966) Vertebrate Paleontology. 3rd edn, University of Chicago Press, Chicago.

    Google Scholar 

  • Romer, A.S. (1968) Notes and Comments on Vertebrate Paleontology University of Chicago Press, Chicago.

    Google Scholar 

  • Roth, V.L. (1984) On Homology. Biol. J. Linn. Soc. 22, 13–29.

    Google Scholar 

  • Rozsa, Z., Varro, A. and Jancso, G. (1985) Use of immunoblockade to study the involvement of peptidergic afferent nerves in the intestinal vasodilatory response to capsaicin in the dog. Eur. J. Pharmacol. 115, 59–64.

    Google Scholar 

  • Rush, R.A. (1984) Immunohistochemical localization of endogenous nerve growth factor. Nature, Lond. 312, 364–7.

    Google Scholar 

  • Sasek, C.A., Seybold, V.S. and Elde, R.P. (1984) The immunohistochemical localization of nine peptides in the sacral parasympathetic nucleus and the dorsal gray commissure in rat spinal cord. Neuroscience 12 855–73.

    Google Scholar 

  • Schultzberg, M., Hökfelt, T., Lundberg, J.M., Terenius, L., Elfvin, L.-G. and Elde, R. (1978) Enkephalin-like immunoreactivity in nerve terminals in sympathetic ganglia and in adrenal medullary cells. Acta Physiol. Scand. 103 475–77.

    Google Scholar 

  • Schultzberg, M., Hökfelt, T., Nilsson, G., Terenius, L., Rehfeld, J.F., Brown, M., Elde, R., Goldstein, M. and Said, S. (1980) Distribution of peptide- and catecholamine-containing neurons in the gastro-intestinal tract of rat and guinea-pig: immunohistochemical studies with antisera to substance P, vasoactive intestinal polypeptide, enkephalin, somatostatin, gastrin/ cholecystokinin, neurotensin and dopamines-β-hydroxylase. Neuroscience 5 689–744.

    Google Scholar 

  • Schultzberg, M., Hökfelt, T., Terenius, L., Elfvin, L.G., Lundberg, J.M., Brandt, J., Elde, R.P. and Goldstein, M. (1979) Enkephalin immunoreactive nerve fibres and cell bodies in sympathetic ganglia of the guinea-pig and rat. Neuroscience 4, 249–70.

    Google Scholar 

  • Seizinger, B.R., Grimm, V., Hollt, V. and Herz, A. (1984) Evidence for a selective processing of proenkephalin B into different opioid peptide forms in particular regions of rat brain and pituitary. J. Neurochem. 42, 447–57.

    Google Scholar 

  • Shen, C.P., Pictet, R.L. and Rutter, W.J. (1982) Human somatostatin I: sequence of the cDNA. Proc. Natl. Acad. Sci. U.S.A. 79, 4575–9.

    Google Scholar 

  • Shimosegawa, T., Koizumi, T., Toyota, T., Goto, Y., Kobayashi, S., Yanaihara, C. and Yanaihara, N. (1985) Methionine-enkephalin-Arg6-Gly7-Leu8 immunoreactive nerve fibres and cell bodies in lumbar paravertebral ganglia and the celiac-superior mesenteric ganglion complex of the rat. An immunohistochemical study. Neurosci. Lett. 57, 169–74.

    Google Scholar 

  • Shively, J., Reeve, J.R., Eysselein, V.E., Benavram, C., Vigna, S.R. and Walsh, J.H. (1987) CCK-5: sequence analysis of a small cholecystokinin from canine brain and intestine. Am. J. Physiol. 252 G272-G275.

    Google Scholar 

  • Sibly, R.M. and Calow, P. (1986) Physiological Ecology of Animals. An Evolutionary Approach, Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Simpson, G.G. (1980) Splended Isolation. The Curious History of South American Mammals, Yale University Press, New Haven.

    Google Scholar 

  • Skofitsch, G. and Jacobowitz, D. (1985) Calcitonin gene-related peptide coexists with substance P in capsaicin-sensitive neurons and sensory ganglia of the rat. Peptides, 6, 747–54.

    Google Scholar 

  • Stjärne, L., Lundberg, J. and Åstrand, P. (1986) Neuropeptide Y - a cotransmitter with noradrenaline and adenosine 5’-triphosphate in the sympathetic nerves of the mouse vas deferens? A biochemical, physiological and electro-pharmacological study. Neuroscience, 18, 151–66.

    Google Scholar 

  • Takahashi, Y., Kato, K., Hayashizaki, Y., Wakabayashi, T., Ohtsuka, E., Matsuki, S., Ikehara, M. and Matsubara, K. (1985) Molecular cloning of the human cholecystokinin gene by use of a synthetic probe containing deoxyinosine. Proc. Natl. Acad. Sci. U.S.A, 82, 1931–5.

    Google Scholar 

  • Taylor, G.S. and Bywater, R.A.R. (1986) Antagonism of non-cholinergic excitatory junction potentials in the guinea-pig ileum by a substance P analogue antagonist. Neurosci. Lett., 63, 23–6.

    Google Scholar 

  • Uddman, R., Ekblad, E., Edvinsson, L., Håkanson, R. and Sundler, F. (1985) Neuropeptide Y-like immunoreactivity in perivascular nerve fibres of the guinea-pig. Regul. Pept., 10, 243–57.

    Google Scholar 

  • Ueda, N., Muramatsu, I., Taniguchi, T., Nakanishi, S. and Fujiwara, M. (1986) Effects of neurokinin A, substance P and electrical stimulation on the rabbit iris sphincter muscle. J. Pharmacol. Exp. Ther., 239, 494–9.

    Google Scholar 

  • Vallbo, A.B., Hagbarth, K.E., Torebjörk, H.E. and Wallin, B.G. (1979) Somatosensory, proprioceptive, and sympathetic activity in human peripheral nerves. Physiol. Rev., 59, 919–57.

    Google Scholar 

  • Vincent, S.R., Dalsgaard, C.-J., Schultzberg, M., Hökfelt, T., Christensson, I. and Terenius, L. (1984) Dynorphin-immunoreactive neurons in the autonomic nervous system. Neuroscience, 11, 973–87.

    Google Scholar 

  • Walker, M.D., Edlund, T., Boulet, A.M. and Rutter, W.J. (1983) Cell-specific expression controlled by the 5’-flanking region of insulin and chymotrypsin genes. Nature, Lond., 306, 557–61.

    Google Scholar 

  • Weight, F.F. (1983) Synaptic mechanisms in amphibian sympathetic ganglia. In Autonomic Ganglia (ed. L.-G. Elfvin), John Wiley and Sons, Chichester, pp. 309–44.

    Google Scholar 

  • Weihe, E., Hartschuh, W. and Weber, E. (1985) Prodynorphin opioid peptides in small somatosensory primary afferents of guinea-pig. Neurosci. Lett., 58, 347–52.

    Google Scholar 

  • Wharton, J., Gulbenkian, S., Mulderry, P.K., Ghatei, M.A., McGregor, G.P., Bloom, S.R. and Polak, J.M. (1986) Capsaicin induces a depletion of calcitonin gene-related peptide (CGRP)-immunoreactive nerves in the cardiovascular system of the guinea-pig and rat. J. Autonom. New. Syst., 16, 289–309.

    Google Scholar 

  • Wharton, J., Polak, J.M., Bryant, M.G., Van Noorden, S., Bloom, S.R. and Pearse, A.G.E. (1979) Vasoactive intestinal polypeptide (VlP)-like immunoreactivity in salivary glands. Life Sci., 25, 273–80.

    Google Scholar 

  • White, J.D., Gall, C.M. and McKelvy, J.F. (1986) Proenkephalin is processed in a projection-specific manner in the rat central nervous system. Proc. Natl. Acad. Sci. U.S.A, 83, 7099–103.

    Google Scholar 

  • Wiesenfeld-Hallin, Z., Hokfelt, T., Lundberg, J.M., Forssmann, W.G., Reinecke, M., Tschopp, F.A. and Fischer, J. A. (1984) Immunoreactive calcitonin generelated peptide and substance P coexist in sensory neurons to the spinal cord and interact in spinal behavioural responses of the rat. Neurosci. Lett. 52 199–204.

    Google Scholar 

  • Wilson, S.P., Klein, R.L., Chang, K.-J., Gasparis, M.S., Viveros, O.H. and Yang, W.-H. (1980) Are opioid peptides co-transmitters in noradrenergic vesicles of sympathetic nerves? Nature, Lond. 288, 707–8.

    Google Scholar 

  • Woolf, C. and Wiesenfeld-Hallin, Z. (1986) Substance P and calcitonin generelated peptide synergistically modulate the gain of the nociceptive flexor withdrawal reflex in the rat. Neurosci. Lett. 66, 226–30.

    Google Scholar 

  • Wu, C.-I. and Li, W.H. (1985) Evidence for higher rates of nucleotide substitution in rodents than in man. Proc. Natl. Acad. Sci. U.S.A. 82, 1741–5.

    Google Scholar 

  • Zhou, Z.-Z., Eng, J., Pan, Y.-C.E., Chang, M., Hulmes, J.D., Raufman, J.-P. and Yalow, R.S. (1985) Unique cholecystokinin peptides isolated from guinea-pig intestine. Peptides 6, 337–41.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Chapman and Hall

About this chapter

Cite this chapter

Gibbins, I.L. (1989). Co-existence and co-function. In: Holmgren, S. (eds) The Comparative Physiology of Regulatory Peptides. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0835-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0835-2_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6862-8

  • Online ISBN: 978-94-009-0835-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics