Skip to main content

Abstract

Thermal shock fracture behaviour of various kinds of zirconia ceramics such as magnesia partially stabilized zirconia (Mg-PSZ), yttria and ceria-doped tetragonal zirconia polycrystals (Y-TZP and Ce-TZP), Y-TZP/A1203 composites and yttria-doped cubic stabilized zirconia (Y-CSZ) was evaluated together with that of alumina, mullite, silicaon nitride and silicon carbide by quenching method using water, methyl alcohol and glycerin as quenching media. Thermal shock fracture of all ceramics was proceeded by the thermal stress due to convective heat transfer accompanied by boiling of solvents under the presents experimental conditions. Thermal shock resistance of zirconia based ceramics increased with increasing the fracture strength, but that of Y-TZP and Y-TZP/Al203 composites was anormalously lower than the predicted value, since the toughening mechanism of zircona by the stress-induced phase tranformation did not sufficiently function against the thermal stress fracture of Y-TZP based ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. D.P.H. Hasselman, “Strength Behavior of Polycrystalline Alumina Subjected to Thermal Shock” J. Am. Ceram. Soc., 53 490–495 (1970).

    Google Scholar 

  2. J.P. Singh, Y. Tree and, D.P.H. Hasselman, “Effect of Bath and Specimen Temperature on the Thermal Stress Resistance of Brittle Ceramics Subjected to Thermal Quenching, ” J. Mater. Sci., 162109–2118 (1981).

    Google Scholar 

  3. M. Oguma. C.J. Fairbanks and, D.P.H. Hasselman, “Thermal Stress Fracture oof Brittle Ceramics by Conductive Heat Transfer in a Liquid Metal Quenching Medium,” J. Am. Ceram. Soc., 69 C87–C88 (1986).

    Google Scholar 

  4. D. Lewis, “Comparison of Critical ATC Values in Thermal Shock with the R Parameter, ” J. Am. Ceram. Soc., 63713–714 (1980).

    Google Scholar 

  5. K. Tsukuma and M. Shimada, “Hot Isostatic Pressing of Y2O3 Partially Stabilized Zirconia, ” Am. Ceram. Soc. Bull.,64310–313 (1985).

    Google Scholar 

  6. K. Tsukuma, K. Ueda, K. Matsushita and, M. Shimada, “Strength and Fracture Toughness of Isostatically Hot-Pressed Composites of A12O3 and Y2O3-Partially-Stabilized ZrO2,” J. Am. Ceram. Soc., 68 C4–C5 (1985).

    Google Scholar 

  7. M. V. Swain, “The Effect of Decoompoosition on the Thermal Shock Behavior of Mg-CSZ,” J. Mater. Sci. Lett.,2 279–282 (1 983).

    Google Scholar 

  8. T. Sato, T. Fukushima, T. Endo and, M. Shimada, “Thermal Shock Resistance of Yttria-Doped Tetragonal Zirconia Polycrystals: Effect of Solvent in Quenching Test,” J. Mater. Sci. Lett.,6 1287–1290 (1987).

    Google Scholar 

  9. A.H. Heuer and L.H. Schoenlein, “Thermal Shock Resistance of Mg-PSZ,” J. Mater. Sci.,203421–3427 (1985).

    Google Scholar 

  10. A.H. Heuer and L.H. Schoenlein, “Thermal Shock Resistance of Mg-PSZ,” J. Mater. Sci.,203421–3427 (1985).

    Google Scholar 

  11. M. Anzai, Y. Kimura, H. Fujii, K. Abe and, Y. Kubota, “Thermal Shock Behavior of Y2O3-Partially Stabilized Zirconia,”Yogyo-Kyokai-Shi, 94577–582 (1986).

    Google Scholar 

  12. M. Ishitsuka, T. Sato, T. Endo and M. Shimada, “Sintering and Mechanical Properties of Yttria-Doped Tetragonal ZrO2 Polycrystal/Mullite Composites, ” J. Am. Ceram. Soc., 70C342–C346 (1987).

    Google Scholar 

  13. J.P. Singh, J.R. Thomas and D.P.H. Hasselman, “Analysis of Effect of Heat-transfer Variables on Thermal Stress Resistance of Brittle Ceramics Measured by Quenching Experiments,” J. Am.Ceram. Soc.,63 140–144 (1980).

    Google Scholar 

  14. H. Hencke, J.R. Thomas, and D.P.H. Hasselman, “Role of Material Properties in the Thermal-Stress Fracture of Brittle Ceramics Subjected to Conductive Heat Transfer, ” J. Am. Cream. Soc.,67393–398 (1984).

    Google Scholar 

  15. J.P. Holman, Heat Transfer, 3rd. ed., McGraw-Hill, New York (1981).

    Google Scholar 

  16. D.G.S. Davis, “The Statistical Approach to Engineering Design in Ceramics, ” Proc. Brit. Ceram. Soc., 22429–452 (1973).

    Google Scholar 

  17. D.G.S. Davis, “The Statistical Approach to Engineering Design in Ceramics, ” Proc. Brit. Ceram. Soc., 22429–452 (1973).

    Google Scholar 

  18. C.M. Phillippi and K.S. Mazdiyasni, “infrared and Raman Spectra of Zirconia Polymorphs, ” J. Am. Ceram. Soc., 54254–258 (1971).

    Google Scholar 

  19. D.R. Clarke and F. Adar, “Measurement of the Crystallographically Transformed Zone Produced by Fracture in Ceramics Containing Tetragonal Zirconia, ” J. Am. Ceram. Soc., 65284–288 (1982).

    Google Scholar 

  20. D.B. Marshall, “Strength Chracteristics of Tranformation- Toughened Zirconia, ” J. Am. Ceram. Soc., 69173–180 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Shigeyuki Sōmiya Masao Doyama Masaki Hasegawa Yoshitaka Agata

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Elsevier Science Publishers Ltd.

About this chapter

Cite this chapter

Sato, T., Ishitsuka, M., Endo, T., Shimada, M., Arashi, H. (1990). Thermal Shock Fracture of Zirconia Ceramics. In: Sōmiya, S., Doyama, M., Hasegawa, M., Agata, Y. (eds) Transactions of the Materials Research Society of Japan. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0789-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0789-8_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6842-0

  • Online ISBN: 978-94-009-0789-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics