Skip to main content

Hydrothermal Carbon: A Review from Carbon in Herkimer ‘Diamonds’ to that in Real Diamonds

  • Chapter
Advanced Ceramics III

Abstract

On the occasion of Professor S. Sōmiya’scareer change, it is appropriate to consider the formation of carbon (whether amorphous, as graphite, or as diamond) by processes that seem to be basically hydrothermal. Sōmiya’s commitment to this mode of synthesis and processing for oxides has resulted in many useful contributions for which he has been duly recognized. When we met, we often talked of a common interest about which neither of us did anything, namely hydrothermal carbon and particularly diamond formation by this mode. This is not a new subject, and over the past 25 years from laboratories all over the world there has been a consistent convergence on the reality of precipitation of carbon from the system C—H— O—Si. This chapter attempts to review the evidence, from amorphous carbon (anthraxolite) forming simultaneously with quartz crystals (such as Herkimer ‘diamonds’) under obviously hydrothermal conditions to the formation of diamond itself at depth in the earth. The next few years should bring considerable clarification and acceptance of the concept of diamond synthesis under most natural conditions, but it is unlikely that this knowledge will change the present metal-graphite mode of commercial production of synthesized diamond. Better understanding of the solubility, transport, and structure of carbon in oxides and silicates is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Akimoto, S. and Akaogi, M. (1980). The magnesium silicate (Mg2SiO4)- magnesium oxide-water system at high pressures and temperatures— possible hydrous magnesian silicates in the mantle transition zone. Phys. Earth Planet. Inter., 23, 268 – 75.

    Article  CAS  Google Scholar 

  • Alekseevskii, K. M., Botkunov, A. I., Nikolaeva, T. T., Ermilov, V. V. and Nastasienko, E. V. (1985). Chemical changes of the environment of diamond synthesis. In Vopr. Orudeneniya Ul’tramafitakh ed. I. F. Romanovich. Nauka, Moscow.

    Google Scholar 

  • Aleshin, V. G., Bogatikov, O. A., Kononova, V. A., Novgorodova, M. I., Smekhnov, A. A., Novikov, N. V. and Nemoshkalenko, V. V. (1986). Relics of reducing fluids trapped in native metals. Dokl. Akad. Nauk SSSR, 291, 957–60.

    CAS  Google Scholar 

  • Arculus, R. J., Dawson, J. B., Mitchell, R. H., Gust, D. A. and Holmes, R. D. (1984). Oxidation states of the upper mantle recorded by megacryst ilmenite in kimberlite and type A and B spinel lherzolites. Contrib. Mineral Petrol., 85, 85–94.

    Article  CAS  Google Scholar 

  • Bennett, P. and Siegel, D. I. (1987). Increased solubility of quartz in water due to complexing by organic compounds. Nature, 326, 684–6.

    Article  CAS  Google Scholar 

  • Berg, G. W. (1986). Evidence for carbonate in the mantle, Nature 324, 50–1.

    Article  CAS  Google Scholar 

  • Bezrukov, G. N. (1974). Genesis of diamond in light of experimental studies on its artificial preparation. Sov. Geol., 31–40.

    Google Scholar 

  • Bleshinskii, S. V. (1984). New trends in the study of Lower Paleozoic carbonaceous shales. Izv. Akad. Nauk Kirg. SSR, 38–43.

    Google Scholar 

  • Boettcher, A. L . (1984). The system silica-water-carbon dioxide: melting, solubility mechanisms of carbon, and liquid structure to high pressures. Am. Mineral, 69, 823–33.

    CAS  Google Scholar 

  • Boettcher, A. L., Luth, R. W. and White, B. S. (1987). Carbon in silicate liquids: the systems NaAlSi3O8-CO2, CaAl2Si2O8-CO2, and KAlSi3O8- CO2. Contrib. Mineral Petrol., 97, 297–304.

    Article  CAS  Google Scholar 

  • Bokii, G. B . (1982). Chemical transport of carbon by nitrogen-containing ‘intermediates’ in natural diamond synthesis. Dokl. Akad. Nauk SSSR, 266, 711–14.

    CAS  Google Scholar 

  • Bonijoly, M., Oberlin, M. and Oberlin, A. (1982). A possible mechanism for natural graphite formation. Int. J. Coal Geol., 1, 283–312.

    Article  CAS  Google Scholar 

  • Botkunov, A. I . (1984). Redox conditions during diamond growth. Byul. NTI. Yakut. Fil. SO AN SSSR, 22–5.

    Google Scholar 

  • Botkunov, A. I., Garanin, V. K., Krot, A. N., Kudryavtseva, G. P. and Matsyuk, S. S. (1985). Primary hydrocarbon inclusions in garnets from the Mir and Sputnik kimberlite pipes, Dokl. Akad. Nauk SSSR, 280, 468–73.

    CAS  Google Scholar 

  • Boyd, F. R. and Finnerty, A. A. (1980). Conditions of origin of natural diamonds of peridotite affinity. J. Geophys. Res. B, 85, 6911–18.

    Article  CAS  Google Scholar 

  • Boyd, F. R., Gurney, J. J. and Richardson, S. H. (1985). Evidence for a 150-200 km thick Archean lithosphere from diamond inclusion thermo- barometry. Nature 315, 387–9.

    Article  CAS  Google Scholar 

  • Boyd, S. R., Mattey, D. P., Pillinger, C. T., Milledge, H. J., Mendelssohn, M. and Seal, M. (1987). Multiple growth events during diamond genesis: an integrated study of carbon and nitrogen isotopes and nitrogen aggregation state in coated stones. Earth Planet. Sci. Lett., 86, 341 – 53.

    Article  CAS  Google Scholar 

  • Brey, G. P. and Green, D. H. (1976). Solubility of carbon dioxide in olivine melilitite at high pressures and role of carbon dioxide in the earth’s upper mantle. Contrib. Mineral. Petrol., 55, 217 – 30.

    Article  CAS  Google Scholar 

  • Bulanova, G. P. and Pavlova, L. P. (1987). Magnesite peridotite assemblage in diamond from the Mir pipe. Dokl. Akad. Nauk SSSR, 295, 1452 – 6.

    CAS  Google Scholar 

  • Burton, K. W. (1986). Garnet-quartz intergrowths in graphitic pelites: the role of the fluid phase. Mineral. Mag., 50, 611 – 20.

    Article  CAS  Google Scholar 

  • Casquet, C. (1986). Carbon-oxygen-hydrogen-nitrogen fluids in quartz segregations from a major ductile shear zone: the Berzos fault, Spanish Central System. J. Metamorph. Geol., 4, 117 – 30.

    Article  CAS  Google Scholar 

  • Chaussidon, M., Albarede, F. and Sheppard, S. M. F. (1987). Sulphur isotope heterogeneity in the mantle from ion microprobe measurements of sulphide inclusions in diamonds, Nature, 330, 242 – 4.

    Article  CAS  Google Scholar 

  • Chou, I. M. (1987). Calibration of the graphite-methane buffer using the f/h2 sensors at 2-kbar pressure. Am. Mineral., 72, 76 – 81.

    CAS  Google Scholar 

  • Cohen, L. H. and Rosenfeld, J. L. (1979). Diamond: depth of crystallization inferred from compressed included garnet. J. Geol., 87, 333 – 40.

    Article  CAS  Google Scholar 

  • Dahe, X. and Zhaotian, L. (1985). Experimental studies of calcium carbonate as a carbon source for synthesizing diamonds. Scientia Geologica Sinica, 255 – 65.

    Google Scholar 

  • Dergachev, D. V. (1986). Diamonds of metamorphic rocks. Dokl. Akad. Nauk SSSR, 291, 189 – 91.

    CAS  Google Scholar 

  • Dergachev, D. V. (1984). Diamond crystal growth in a diffuse stream of juvenile carbon. Geol. Rud. R-nov i Mestorozhd. Tverd. Polez. Iskopa- emykh Kazakhstana, Alma-Ata, 142 – 51.

    Google Scholar 

  • Dickey, J. S., Jr., Bassett, W. A., Bird, J. M. and Weathers, M. A. (1983). Liquid carbon in the lower mantle. Geology, 11, 219.

    Article  CAS  Google Scholar 

  • Dickinson, J. T., Jensen, L. C., McKay, M. R. and Freund, F. (1986). The emission of atoms and molecules accompanying fracture of single crystal MgO, /. Vac. Sci. Technol., A4 (3), 1648 – 52.

    Article  Google Scholar 

  • Diessel, C. F., Brothers, R. N. and Black, P. M. (1978). Coalification and graphitization in high-pressure schists in New Caledonia, Contrib. Mineral. Petrol., 68, 63 – 78.

    Article  CAS  Google Scholar 

  • Draper, D. and Goodchild, W. H. (1916). Notes on the genesis of diamond. Mining J., 113, 357 – 9.

    CAS  Google Scholar 

  • Draper, D. and Goodchild, W. H. (1930). Notes on the genesis of diamond. S. African Mining and Eng. J., 40, Pt. 2, 495–6, 570 – 2.

    Google Scholar 

  • Dubessy, J. (1984). Simulation of chemical equilibria in the carbon-oxygen- hydrogen system. Methodological consequences for fluid inclusions. Bull. Mineral., 107, 155 – 68.

    CAS  Google Scholar 

  • Dunn, J. and Fisher, D. (1954). Occurrence, properties and paragenesis of anthraxolite in the Mohawk Valley. Am. J. Sci., 252, 489 – 501.

    Article  CAS  Google Scholar 

  • Eggler, D. H. (1975). CO2 as volatile component of the mantle: the system Mg2SiO4-SiO2-H2O-Co2. Phys. Chem. Earth, 9, 869 – 81.

    Article  CAS  Google Scholar 

  • Eggler, D. H. (1976). Does CO2 cause partial melting in the low-velocity layer of the mantle? Geology, 69 – 72.

    Google Scholar 

  • Eggler, D. H. (1978). Carbon dioxide in silicate melts: II Solubilities of CO2 and H2O in CaMgSi2O6 (diopside) liquids and vapors at pressures to 40kb. Am. J. Sci., 278, 64 – 94.

    Article  CAS  Google Scholar 

  • Eggler, D. H., Mysen, B. O., Hoering, T. C. and Holloway, J. R. (1979). The solubility of carbon monoxide in silicate melts at high pressures and its effect on silicate phase relations. Earth Planet. Sci. Lett., 43, 321 – 30.

    Article  CAS  Google Scholar 

  • Eggler, D. H., Kushiro, I. and Holloway, J. R. (1979). Free energies of decarbonation reactions at mantle pressures: I. Stability of the assemblage forsterite-enstatite-magnesite in the system MgO-SiO2-CO2-H2O to 60kbar. Am. Mineral., 64, 288 – 93.

    CAS  Google Scholar 

  • Eggler, D. H. (1983). Upper mantle oxidation state: evidence from olivine- orthopyroxene-ilmenite assemblages. Geophys. Res. Lett., 10, 365 – 8.

    Article  CAS  Google Scholar 

  • Ellis, D. E. and Wyllie, P. J. (1979). Carbonation, hydration, and melting relations in the system MgO-H2O-CO2 at pressures up to 100 kbar. Am. Mineral., 64, 32 – 40.

    CAS  Google Scholar 

  • Ellis, D. E. and Wyllie, P. J. (1980). Phase relations and their petrological implications in the system MgO-SiO2-H2O-CO2 at pressures up to 100kbar. Am. Mineral., 65, 540 - 6.

    CAS  Google Scholar 

  • Eyring, H. and Cagle, F. W., Jr. (1952). An examination into the origin, possible synthesis and physical properties of diamonds. Z. Elektrochem., 56, 480 – 3.

    CAS  Google Scholar 

  • Fedoseev, D. V. and Deryagin, B. V. (1982). Formation of metastable forms of carbon in the gas phase. Izv. Akad. Nauk SSSR., Ser. Khim., 1725 – 9.

    Google Scholar 

  • Fein, J. B. and Walther, J. V. (1987). Calcite solubility in supercritical carbon dioxide-water fluids. Geochim. Cosmochim. Acta, 51, 1665 – 73.

    Article  CAS  Google Scholar 

  • Fesq, H. W., Bibby, D. M., Erasmus, C. S. and Kable, E. J. D. (1975). National Institute of Metals, Johannesburg, South Africa, Report NIM- 1636.

    Google Scholar 

  • Foster, L. M., Long, G. and Hunter, M. S. (1956). Reactions between aluminum oxide and carbon; the AI2O3-AI4C3 diagram. J. Am. Ceram. Soc 39, 1 – 11.

    Google Scholar 

  • Frank, F. C., Lang, A. R. and Moore M. (1973). Cavitation as a mechanism for the synthesis of natural diamonds. Nature, 246, 143 – 4.

    Article  CAS  Google Scholar 

  • Franz, G. W. and Wyllie, P. J. (1979). Experimental studies in CaO-MgO- SiO2-CO2-H2O. In Ultramafic and Related Rocks, ed. P. J. Wyllie, Robert E. Krieger Publishing Co, Huntington, N.Y.

    Google Scholar 

  • French, B. M. and Rosenberg, P. E. (1965). Siderite (FeC03): Thermal decomposition in equilibrium with graphite. Science, 147, 1283 – 4.

    Article  CAS  Google Scholar 

  • French, B. M. (1966). Some geological implications of equilibrium between graphite and a C-H-O gas phase at high temperatures and pressures. Rev. Geophys., 4, 223 – 53.

    Article  CAS  Google Scholar 

  • Freund, F., Debras, G. and Demortier, G. (1977). Carbon content of magnesium oxide single crystals grown by arc fusion method. J. Crystal Growth, 38, 277 – 80.

    Article  CAS  Google Scholar 

  • Freund, F., Debras, G. and Demortier, G. (1978). Carbon content of high-purity alkaline earth oxide single crystals grown by arc fusion. J. Am. Ceram. Soc., 61, 429 – 34.

    Article  CAS  Google Scholar 

  • Freund, F., Kathrein, H., Wengeler, H. and Knobel, R. (1980). Carbon in solid solution in forsterite—a key to the untractable nature of reduced carbon in terrestrial and cosmogenic rocks. Geochim. Cosmochim. Acta, 44, 1319 – 33.

    Article  CAS  Google Scholar 

  • Freund, F . et al. (1980). Atomic carbon in magnesium oxide, Part I: Carbon analysis by the 12C(d,p)13 method. Mater. Res. Bull., 15, 1011–18.

    Article  CAS  Google Scholar 

  • Freund, F. et al. (1980). Atomic carbon in magnesium oxide, Part II; Laserflash-induced mass spectrometry. Mater. Res. Bull 15, 1019–24.

    Article  CAS  Google Scholar 

  • Freund, F. (1981). Charge transfer and O¯ formation in high and ultrahigh pressure phase transitions. Bull. Mineral 104, 177–85.

    CAS  Google Scholar 

  • Freund, F. (1981). Mechanism of the water and carbon dioxide solubility in oxides and silicates and the role of O¯. Contrib. Mineral. Petrol., 76, 474 – 82.

    Article  CAS  Google Scholar 

  • Freund, F. (1982). Solubility mechanisms of water in silicate melts at high pressures and temperatures: a Raman spectroscopic study: discussion. Am. Mineral 67, 151–4.

    Google Scholar 

  • Freund, F. and Wengeler, H. (1982). The infrared spectrum of hydroxide- compensated defect sites in carbon-doped magnesium oxide and calcium oxide single crystals. J. Phys. Chem. Solids, 43, 129 – 45.

    Article  CAS  Google Scholar 

  • Freund, F. (1983). The oxygen (1¯) state, hydrogen, and carbon in solid solution in refractory oxides. High Temp.-High Pressures, 15, 335 – 46.

    CAS  Google Scholar 

  • Freund, F., Wengeler, H. et al. (1983). Hydrogen and carbon derived from dissolved H2O and CO2 in minerals and melts. Bull. Mineral., 106, 185 – 200.

    CAS  Google Scholar 

  • Freund, F. (1984). Hydrogen and nitrogen gas from magmatic rocks—a solid state viewpoint. Oil Gas J., 82, 140 – 1.

    CAS  Google Scholar 

  • Freund, F. (1984). Volume instabilities in the mantle as a possible source for kimberlite formation. Dev. Petrol. IIA (Kimberlites, Vol. 1) 405–15, 435 – 66.

    Google Scholar 

  • Freund, F. (1986). Solute carbon and carbon segregation in magnesium oxide single crystals—a secondary mass spectrometry study. Phys. Chem. Minerals., 13, 262 – 76.

    Article  CAS  Google Scholar 

  • Freund, F. and Oberheuser, G. (1986). Water dissolved in olivine: a single crystal infrared study. J. Geophys. Res. B, 91, 745 – 61.

    Article  CAS  Google Scholar 

  • Freund, F. (1986). Carbon in oxides and silicates—dissolution versus exsolution.J. Crystal Growth, 75, 107 – 121.

    Article  CAS  Google Scholar 

  • Freund, F. (1986). Comment on Solute carbon and carbon segregation in magnesium oxide single crystals—a secondary ion mass spectrometry study by I. S. T. Tsong and U. Knipping. Reply. Phys. Chem. Minerals., 13, 280.

    Article  CAS  Google Scholar 

  • Freund, F. (1987). Hydrogen and carbon in solid solution in oxides and silicates.. Phys. Chem. Minerals, 15, 1 – 18.

    Article  CAS  Google Scholar 

  • Frost, B. R. (1979). Mineral equilibriums involving mixed-volatiles in a carbon-oxygen-hydrogen fluid phase: the stabilities of graphite and siderite. Am. J. Sci., 279, 1033 – 59.

    Article  CAS  Google Scholar 

  • Galimov, E. M. (1973). Possibility of natural diamond synthesis under conditions of cavitation, occurring in a fast-moving magmatic melt. Nature, 243, 389 – 91.

    Article  CAS  Google Scholar 

  • Garanin, V. K., Guseva, E. V., Dergachev, D. V., Kudryavtseva, G. P. and Orlov, R. Yu. (1988). Diamond crystals in garnets from granite-gneisses. Dokl. Akad. Nauk SSSR, 298, 190 – 4.

    CAS  Google Scholar 

  • Giardini, A. A. and Tydings, J. E. (1962). Diamond synthesis: observations on the mechanism of formation. Am. Mineral., 47, 1393 – 421.

    CAS  Google Scholar 

  • Giardini, A. A., Salotti, C. A. and Lakner, J. F. (1968). Synthesis of graphite and hydrocarbons by reaction between calcite and hydrogen. Science, 159, 317 – 19.

    Article  CAS  Google Scholar 

  • Giardini, A. A. and Melton, C. E. (1975). Gases released from natural and synthetic diamonds by crushing under high vacuum at 200°C and their significance to diamond genesis. Fortschr. Min., 52, 455 – 64.

    CAS  Google Scholar 

  • Giardini, A. A., Hurst, V. J., Melton, C. E. and Stormer, J. C., Jr. (1974). Biotite as a primary inclusion in diamond: its nature and significance. Am. Mineral., 59, 783 – 9.

    CAS  Google Scholar 

  • Glassley, W. E. (1983). Deep crustal carbonates as CO2 fluid sources: evidence from metasomatic reaction zones. Contrib. Mineral. Petrol., 84, 15.

    Article  CAS  Google Scholar 

  • Goldsmith, J. R. (1986). The role of hydrogen in promoting aluminum-silicon interdiffusion in albite (NaAlSi3O8) at high pressures. Earth Planet. Sci. Lett., 80, 135 – 8.

    Article  CAS  Google Scholar 

  • Goldsmith, J. R. (1987). Aluminum/silicon interdiffusion in albite: effect of pressure and the role of hydrogen. Contrib. Mineral. Petrol., 95, 311 – 21.

    Article  CAS  Google Scholar 

  • Gorbachev, N. S., Zyryanov, V. N. and Boettcher, A. L. (1985). Solubility of sulfides in fluid-containing silicate melts at high pressures. Ocherki Fiz.-Khim. Petrol., 13, 153 – 65.

    CAS  Google Scholar 

  • Haggerty, S. E. and Tompkins, L. A. (1983). Redox state of earth’s upper mantle from kimberlite ilmenites. Nature, 303, 295.

    Article  CAS  Google Scholar 

  • Haggerty, S. E. and Tompkins, L. A. (1984). Subsolidus reactions in kimberlitic ilmenites: exsolution, reduction and redox state of the mantle. Dev. Petrol., IIA(Kimberlites, Vol. 1 ), 335 – 57.

    Google Scholar 

  • Haggerty, S. E. (1986). Diamond genesis in a multiply-constrained model. Nature, 320, 34 – 8.

    Article  CAS  Google Scholar 

  • Harte, B. (1986). [Comment on the] Genesis of diamond: A mantle saga-distorted in the telling. Am. Mineral., 71, 1258; Reply by Meyer 71, 1259–60.

    Google Scholar 

  • Hervig, R. L., Smith, J. V., Steele, I. M., Gurney, J. J., Meyer, H. O. A. and Harris, J. W. (1980). Diamonds: minor elements in silicate inclusions: pressure-temperature implications. J. Geophys. Res., B, 85, 6919 - 29.

    Article  CAS  Google Scholar 

  • Hirano, S. (1970). Effect of coexisting minerals on graphitization of carbon under pressure. Dr. Engr. thesis, Nagoya University.

    Google Scholar 

  • Holloway, J. R. and Jakobsson, S. (1986). Volatile solubilities in magmas: transport of volatiles from mantles to planet surfaces. J. Geophys. Res. B, 91, D505 – 8.

    Article  CAS  Google Scholar 

  • Homeny, J., Nelson, G. G. and Risbud, S. H. (1988). Oxycarbide glasses in the Mg-Al-Si-O-C system. J. Am. Ceram. Soc., 71, 386 – 90.

    Article  CAS  Google Scholar 

  • Itaya, T. (1981). Carbonaceous material in pelitic schists of the Sanbagawa metamorphic belt in central Shikoku, Japan. Lithos, 14, 215 – 24.

    Article  CAS  Google Scholar 

  • Ivankin, P. F., Argunov, K. P. and Boris, E. I. (1983). Evolution of conditions for diamond formation in the kimberlite process. Sov. Geol., 30 – 8.

    Google Scholar 

  • Jacobs, G. K. and Kerrick, D. M. (1981). Methane: an equation of state with application to the ternary system H2O-CO2-CH4. Geochim. Cosmochim. Acta 45, 607 – 14.

    Article  CAS  Google Scholar 

  • Jakobsson, S. and Holloway, J. R. (1986). Crystal-liquid experiments in the presence of a carbon-oxygen-hydrogen fluid buffered by graphite + iron -I- wustite: experimental method and near-liquidus relations in basanite. J. Volcanol. Geotherm. Res., 29, 265 – 91.

    Article  CAS  Google Scholar 

  • Jedwab, J. and Boulegue, J. (1984). Graphite crystals in hydrothermal vents. Nature, 310, 41 – 43.

    Article  CAS  Google Scholar 

  • Johnson, W. (1915). Origin and formation of the diamond. S. African J. Sci., II, 275 – 86.

    Google Scholar 

  • Kadik, A. A. (1988). Effect of melting on the evolution of fluid and oxidation-reduction regimes of the earth’s upper mantle. Geokhimiya, 2, 236 – 45.

    Google Scholar 

  • Kamatsu, H. (1973). Letter from the depth of the earth. Diamonds, growth and nature. Kotai Butsuri, 8, 293 – 304.

    CAS  Google Scholar 

  • Kaminskii, F. V., Kulakova, I. I. and Ogloblina, A. I. (1985). Polycyclic aromatic hydrocarbons in carbonado and diamond. Dokl. Akad. Nauk SSSR 283, 985 – 8.

    CAS  Google Scholar 

  • Karkhanis, S. N. (1977). Synthesis of abiogenic graphite under Precambrian conditions. J. Geol. Soc. India, 18, 97 – 103.

    CAS  Google Scholar 

  • Kathrein, H., Gonska, H. and Freund, F. (1983). Subsurface segregation and diffusion of carbon in magnesium oxide. Appl. Physics A. Solids and Surfaces, 30, 33.

    Article  Google Scholar 

  • Kennedy, G. C. and Nordlie, B. E. (1968). The genesis of diamond deposits. Econ. Geol., 63, 495 – 503.

    Article  CAS  Google Scholar 

  • Kitamura, M., Kondoh, S., Morimoto, N., Miller, G. H., Rossman, G. R. and Putnis, A. (1987). Planar OH-bearing defects in mantle olivine. Nature, 328, 143 – 5.

    Article  CAS  Google Scholar 

  • Kucha, H., Kwiecinska, B., Piestrzynski, A. and Wieczorek, A. (1979). On the genesis of graphite from magnetite rocks of Krzemianka (NE Poland). Mineralogia Polonica, 10, 81 – 8.

    CAS  Google Scholar 

  • Kulakova, I. I., Ogloblina, A. I., Rudenko, A. P., Florovskaya, V. N., Botkunov, A. I. and Skvortsova, V. L. (1982). Polycyclic aromatic hydrocarbons in diamond-associated minerals and possible mechanism of their formation. Dokl. Akad. Nauk SSSR, 267, 1458 – 61.

    CAS  Google Scholar 

  • Langford, R. E., Melton, C. E. and Giardini, A. A. (1974). Diamond growth by sulphide reduction of CO2. Nature, 249, 647.

    Article  CAS  Google Scholar 

  • Langford, R. E. (1978). The origin of diamonds II. Theoretical Study. J. Korean Chem. Soc. (Taehan Hwakak Hoechi), 22, 138 – 49.

    CAS  Google Scholar 

  • Lapin, A. V. and Marshintsev, V. K. (1984). Carbonatites and kimberlitic carbonatites. Geol. Rudn. Mestorozhd., 26, 28 – 42.

    CAS  Google Scholar 

  • Larimer, J. W. and Bartholomay, M. (1979). The role of carbon and oxygen in cosmic gases: some applications to the chemistry and mineralogy of enstatite chondrites. Geochim. Cosmochim. Acta, 43, 1455 – 66.

    Article  CAS  Google Scholar 

  • Letnikov, F. A. (1983). Formation of diamonds in deep-seated tectonic zones. Dokl. Akad. Nauk SSSR, 27, 433 – 5.

    Google Scholar 

  • Lukanin, O. A. and Kadik, A. A. (1987). Melting of ultrabasic mantle matter in the presence of oxidation-reduction conditions. Vulkanol. Seismol., 3 – 13.

    Google Scholar 

  • Luth, R. W. and Boettcher, A. L. (1986). Hydrogen and the melting of silicates. Am. Mineral., 71, 264 – 76.

    CAS  Google Scholar 

  • Luth, R. W., Mysen, B. O. and Virgo, D. (1987). Raman spectroscopic study of the solubility behavior of hydrogen in the system sodium oxide-alumina-silica-hydrogen. Am. Mineral., 72, 481 – 6.

    CAS  Google Scholar 

  • Mainwood, A. and Stoneham, A. M. (1984). Interstitial muons and hydrogen in diamond and silicon. J. Phys. C.\Solid State Phys., 17, 2513 – 24.

    Article  CAS  Google Scholar 

  • Malinovskii, I. Yu., Godovikov, A. A., Ran, E. A. and Logvinov, V. M. (1981). Study of silicate systems and development of superhigh pressure apparatus in connection with problems of mantle petrology and diamond genesis. Eksperim. Petrol. Vysok. Davlenii, Novosibirsk, 3 – 31.

    Google Scholar 

  • Mal’kov, B. A. (1978). Conditions of diamond formation in nature according to crystallophysical data and the results of the experimental melting of peridotites. Dokl. Akad. Nauk SSSR, 243, 469 – 72.

    Google Scholar 

  • Mamchur, G. P., Mel’nik, Yu. M., Khar’kin, A. D. and Yarynych, O. A. (1980). Origin of carbonates and bituminous matter in kimberlite pipes according to carbon isotope composition. Geokhimiya, 540 – 7.

    Google Scholar 

  • Marakushev, A. A., Bezmen, N. I. and Mal’kov, B. A. (1981). Zoning of crystals in diamond-containing rock. Mineral Zh., 3, 37 – 44.

    CAS  Google Scholar 

  • Marakushev, A. A. (1981). Problem of the fluid regime in the formation of diamond-bearing rocks. Geol. Rudn. Mestorozhd., 23, 3 – 17.

    CAS  Google Scholar 

  • Marakushev, A. A. (1985). Mineral associations of diamond and the problem of the formation of diamond-containing magmas. Ocherki Fiz.-Khim. Petrol., 5 – 53.

    Google Scholar 

  • Marx, P. C. (1972). Pyrrhotine and the origin of terrestrial diamonds. Mineral Mag., 38, 636 – 8.

    Article  CAS  Google Scholar 

  • Mathez, E. A., Dietrich, V. J. and Irving, A. J. (1984). The geochemistry of carbon in mantle peridodites. Geochim. Cosmochim. Acta, 48, 1849 – 59.

    Article  CAS  Google Scholar 

  • Mathez, E. A., Blacic, J. D., Berry, J., Hollander, M. and Maggiore, C. (1987). Carbon in olivine: results from nuclear reaction analysis. J. Geophys. Res. B, 92, 3500 – 6.

    Article  CAS  Google Scholar 

  • Mattioli, G. S. and Wood, B. J. (1986). Upper mantle fugacity recorded by spinel lherzolites. Nature, 322, 626.

    Article  CAS  Google Scholar 

  • Melton, C. E. and Giardini, A. A. (1974). The composition and significance of gas released from natural diamonds from Africa and Brazil. Am. Mineral 59, 775 – 82.

    CAS  Google Scholar 

  • Melton, C. E. and Giardini, A. A. (1975). Experimental results and a theoretical interpretation of gaseous inclusions found in Arkansas natural diamonds. Am. Mineral., 60, 413 – 17.

    CAS  Google Scholar 

  • Melton, C. E. and Giardini, A. A. (1981). The nature and significance of occluded fluids in three Indian diamonds. Am. Mineral., 66, 746 – 50.

    CAS  Google Scholar 

  • Melton, C. E. and Giardini, A. A. (1982). The evolution of the earth’s atmosphere and oceans. Geophys. Res. Lett., 9, 579 – 82.

    Article  CAS  Google Scholar 

  • Meyer, H. O. A. and Boyd, F. R. (1972). Composition and origin of crystalline inclusions in natural diamond. Geochim. Cosmochim. Acta, 36, 1255 – 73.

    Article  CAS  Google Scholar 

  • Meyer, H. O. A. and Tsai, H. M. (1976). Mineral inclusions in diamond: temperature and pressure of equilibration. Science, 191, 849 – 51.

    Article  CAS  Google Scholar 

  • Meyer, H. O. A. (1985). Genesis of diamond: a mantle saga. Am. Mineral., 70, 344 – 55.

    CAS  Google Scholar 

  • Miller, G. H., Rossman, G. R. and Harlow, G. E. (1987). The natural occurrence of hydroxide in olivine. Phys. Chem. Minerals, 14, 461 – 72.

    Article  CAS  Google Scholar 

  • Mitchell, R. H. and Crocket, J. H. (1971). Diamond genesis—a synthesis of opposing views. Mineral. Deposita, 6, 392 – 403.

    Article  CAS  Google Scholar 

  • Miyashiro, A. (1964). Oxidation and reduction in the earth’s crust with special reference to the role of graphite. Geochim. Cosmochim. Acta, 28, 717 – 29.

    Article  CAS  Google Scholar 

  • Moore, A. E. (1987). A model for the origin of ilmenite in kimberlite and diamond: Implications for the genesis of the discrete nodule (megacryst) suite. Contrib. Mineral. Petrol95, 245 – 53.

    Google Scholar 

  • Miyano, T. and Klein, C. (1986). Fluid behavior and phase relations in the system iron-magnesium-silicon-carbon-oxygen-hydrogen: application to high-grade metamorphism of iron formations. Am. J. Sci., 286, 540 – 75.

    Article  CAS  Google Scholar 

  • Mysen, B. O., Eggler, D. H., Seitz, M. G. and Holloway, J. R. (1976).Carbon dioxide in silicate melts and crystals. Part I. Solubility measurements. Am. J. Sci., 276, 455–79.

    Article  CAS  Google Scholar 

  • Mysen, B. O. (1977). The solubility of H2O and CO2 under predicted magma genesis conditions and some penological and geophysical implications. Rev. Geophys. Space Phys., 15, 351–61.

    Article  CAS  Google Scholar 

  • Mysen, B. O. and Virgo, D. (1980). Solubility mechanisms of carbon dioxide in silicate melts: a Raman spectroscopic study. Am. Mineral 65, 885–99.

    CAS  Google Scholar 

  • Mysen, B. O., Virgo, D., Harrison, W. J. and Scarfe, C. M. (1980). Solubility mechanisms of H2O in silicate melts at high pressures and temperatures: a Raman spectroscopic study. Am. Mineral., 65, 900–14.

    CAS  Google Scholar 

  • Mysen, B. O. and Virgo, D. (1982). Solubility mechanisms of water in silicate melts at high pressures and temperatures: Raman spectroscopic study: reply. Am. Mineral 67, 155.

    CAS  Google Scholar 

  • Nestor, L. R. (1967). Glass containing dissolved carbon, methods of making and using and obtaining graphite. U.S. Patent 3,348,917: filed 7/22/60; issued 10/24/67.

    Google Scholar 

  • Neuhaus, A. (1954). Uber die Synthese des Diamanten. Angew. Chem., 66, 525 – 36.

    Article  CAS  Google Scholar 

  • Nickel, K. G. and Green, D. H. (1985). Empirical geothermobarometry for garnet peridotites and implications for the nature of the lithosphere, kimberlites and diamonds. Earth Planet. Sci. Lett., 73, 158 – 70.

    Article  CAS  Google Scholar 

  • Nikolayeva, O. V. and Germanov, A. I. (1972). Thermodynamic equilibria in the system C-H2O under hydrothermal conditions. Dokl. Akad. Nauk SSSR, 207, 958 – 61.

    Google Scholar 

  • Nikol’skii, N. S. (1981). Metastable crystallization of natural diamonds from the fluid phase. Dokl. Akad. Nauk SSSR, 256, 954 – 8.

    Google Scholar 

  • Nikol’skii, N. S. (1982). Modelling equilibrium compositions of multicom- ponent fluid phases (as in the system H-O-C) and their importance in magmatic activity. Dokl. Akad. Nauk SSSR, 257, 134 – 8.

    Google Scholar 

  • Nikol’skii, N. S. (1984). Crystallization conditions for some reduced mineral phases and their petrogenetic importance. Vulkanol. Seismol., 45 – 58.

    Google Scholar 

  • Nuth, J. A. (1987). Are small diamonds thermodynamically stable in the interstellar medium? Astrophys. Space Sci., 139, 103 – 9.

    Article  CAS  Google Scholar 

  • Ohmoto, H. and Kerrick, D. (1977). Devolatilization equilibria in graphitic systems. Am. J. Sci., 277, 1013 – 44.

    Article  CAS  Google Scholar 

  • Olsen, E. and Fuchs, L. (1968). Krinovite, NaMg2CrSi3O10: a new meteorite mineral. Science, 161, 786 – 7.

    Article  CAS  Google Scholar 

  • Ostrovsky, I. A. (1979). The thermodynamics of substances at very high pressures and temperatures and some mineral reactions in the earth’s mantle. Phys. Chem. Minerals, 5, 105 – 18.

    Article  Google Scholar 

  • Pasteris, J. D. (1981). Occurrence of graphite in serpentinized olivines in kimberlite. Geology, 9, 356 – 9.

    Article  CAS  Google Scholar 

  • Pasteris, J. D. (1984). Kimberlites: complex mantle melts. Ann. Rev. Earth Planet. Sci., 12, 133 – 53.

    Article  CAS  Google Scholar 

  • Patel, A. R. and Kuruvilla, A. (1984). On the possible origins of natural diamonds. Pramana, 22377 – 86.

    Google Scholar 

  • Perchuk, L. L. and Suvorova, V. A. (1973). Thermodynamic calculation of the fugacities of carbon monoxide and carbon dioxide in the graphite-diamond phase transition region. Ocherki Fiz.-Khim. Petrologii, No. 3, 15 – 18.

    Google Scholar 

  • Perchuk, L. L. and Vagonov, V. I. (1980). Petrochemical and thermodynamic evidence on the origin of kimberlites. Contrib. Mineral Petrol., 72, 219 – 28.

    Article  CAS  Google Scholar 

  • Petrov, V. S. (1967). On the natural genesis of diamonds. Rost Kristallov, 7, Part 1, 105 – 11.

    Google Scholar 

  • Petrov, V. S. (1972). Equilibrium in the olivine-diamond system. Rost Kristallov, 9, 73 – 5.

    CAS  Google Scholar 

  • Pokhilenko, N. P., Sobolev, N. V., Sobolev, V. S. and Lavrent’ev, Yu. G. (1976). Xenolith of diamond-containing ilmenite-pyrope lherzolite from the ‘Udachnaya’ kimberlite pipe (Yakutia). Dokl. Akad. Nauk SSSR, 21, 438 – 41.

    CAS  Google Scholar 

  • Popivnyak, I. V., Demin, B. G., Levitskii, V. V. and Koptil, V. I. (1980). New data on volatile components of mantle mineral-forming media. Dokl. Akad. Nauk SSSR, 254, 1238 – 41.

    CAS  Google Scholar 

  • Portnov, A. M. (1982). Self-oxidation of mantle fluid and the genesis of diamond of kimberlite. Dokl. Akad. Nauk. SSSR, 267, 942.

    CAS  Google Scholar 

  • Rai, C. S., Sharma, S. K., Muenow, D. W., Matson, D. W. and Byers, C. D. (1983). Temperature dependence of carbon dioxide solubility in high pressure quenched glasses of diopside composition. Geochim. Cosmochim. Acta, 47, 953 – 8.

    Article  CAS  Google Scholar 

  • Richardson, S. H., Gurney, J. J., Erlank, A. J. and Harris, J. W. (1984). Origin of diamonds in old enriched mantle. Nature, 310, 198 – 202.

    Article  CAS  Google Scholar 

  • Rimbach, H. and Chatterjee, N. D. (1987). Equations of state for hydrogen, water, and hydrogen-water fluid mixtures at temperatures above 0’01 degree C and at high pressures. Phys. Chem. Minerals, 14, 560 – 9.

    Article  CAS  Google Scholar 

  • Ringwood, A. E. (1977). Synthesis of pyrope-knorringite solid solution series. Earth Planet. Sci. Lett., 36, 443 – 8.

    Article  CAS  Google Scholar 

  • Robinson, D. N. (1978). The characteristics of natural diamond and their interpretation. Minerals Sci. Engrg, 10, 55 – 72.

    CAS  Google Scholar 

  • Rodewald, H. J. (1960). The genesis of diamonds. Verlag Meier and Cie, Schaffhausen, Switzerland.

    Google Scholar 

  • Rosenhauer, M., Woermann, E., Knecht, B. and Ulmer, C. G. (1977). The stability of graphite and diamond as a function of the oxygen fugacity of the mantle, Extended Abstract. Second International Kimberlite Conference.

    Google Scholar 

  • Rumble, D., Duke, E. F. and Hoering, T. L. (1986). Hydrothermal graphite in New Hampshire: evidence of carbon mobility during regional meta- morphism. Geology, 14, 452 – 5.

    Article  CAS  Google Scholar 

  • Ryabchikov, I. D. (1980). Nature of kimberlite ‘magmas’. Geol. Rudn. Mestorozhd., 22, 18 – 26.

    CAS  Google Scholar 

  • Ryabchikov, I. D. (1982). Hydrothermal reactions in the earth’s mantle. In Proceedings of the 1st International Symposium on Hydrothermal Reactions. Tokyo, pp. 244 – 57.

    Google Scholar 

  • Ryabchikov, I. D., Ukhanov, A. V. and Ishii, T. (1985). Redox equilibria in the ultramafic basic rocks from the upper mantle of the Yakutian kimberlite province. Geokhimiya, 8, 1110 – 23.

    Google Scholar 

  • Samoilovich, M. I. (1987). Thermodynamics of diamond formation. Dokl. Akad. Nauk SSSR, 296, 602 – 4.

    CAS  Google Scholar 

  • Schrocke, H. (1969). New aspect of diamond formation. Z. Dt. Gemmol. Ges., 1851 – 5.

    Google Scholar 

  • Schulze, D. J. (1986). Calcium anomalies in the mantle and a subducted metaserpentinite origin for diamonds. Nature, 319, 483 – 5.

    Article  CAS  Google Scholar 

  • Sellschop, J. P. F. (1975). Evidence on the environment of diamond genesis from trace element studies of natural diamonds. Diamond Research, 35 – 41.

    Google Scholar 

  • Serebryanaya, N. R., Losev, V. G., Voronov, O. A., Rakhmanina, A. V. and Yakovlev, E. N. (1985). Morphology of diamond crystals synthesized from hydrocarbons. Kristallografiya, 1026 – 7.

    Google Scholar 

  • Sharp, W. E. (1966). Pyrrhotite: a common inclusion in South African diamonds. Nature, 211, 402 – 3.

    Article  CAS  Google Scholar 

  • Simakov, S. K. (1982). Formation and crystallization of diamond in a mantle melt from fluid. Dokl. Akad. Nauk SSSR, 266, 470 – 3.

    CAS  Google Scholar 

  • Simakov, S. K. (1983). Formation of carbon in mantle fluid from the reaction of nitrogen with methane. Dokl. Akad. Nauk SSSR, 268, 206 – 10.

    CAS  Google Scholar 

  • Simakov, S. K. (1984). Possibility of diamond metastable formation from fluids under conditions in the earth’s crust. Dokl. Akad. Nauk SSSR, 278, 953 – 7.

    CAS  Google Scholar 

  • Simakov, S. K. (1987). Diamond formation in the process of kimberlite magma evolution. Dokl. Akad. Nauk SSSR, 293, 681 – 4.

    CAS  Google Scholar 

  • Slawson, C. B. (1953). Synthesis of graphite at room temperature. Am. Mineral., 38, 50 – 5.

    CAS  Google Scholar 

  • Slodkevich, V. V. (1981). Some genetic aspects of diamond formation in a magmatic system of closed type. Samorodn. Mineraloobraz. v Magmatich. Protesse. Materialy Konf. Yakutsk 1981, pp. 149 – 53.

    Google Scholar 

  • Slodkevich, V. V. (1987). Exadiamondiferous phlogopite lherzolites. Dokl. Akad. Nauk SSSR, 297, 942 – 5.

    CAS  Google Scholar 

  • Smyth, J. R. (1987). Beta-Mg2SiO4: A potential host for water in the mantle? Am. Mineral., 72, 1051 – 5.

    CAS  Google Scholar 

  • Sobolev, N. V., Pokhilenko, N. P. and Efimova, E. S. (1984). Xenoliths of diamond-bearing peridotites in kimberlites and the problem of diamond origin. Geol. Geofiz., 63 – 80.

    Google Scholar 

  • Sobolev, N. V. (1983). Diamond paragenesis and the problem of abyssal mineral formation. Zap. Vses. Mineral. O-va., 112, 389 – 97.

    CAS  Google Scholar 

  • Sobolev, V. V. (1987). Diamond crystallization in nature. Fiz. Goreniya Vzryva, 23, 91 – 5.

    CAS  Google Scholar 

  • Sobolev, N. V. and Shatskii, V. S. (1987). Carbon mineral inclusions in garnets of metamorphic rocks. Geol. Geofiz., 7, 77 – 80.

    Google Scholar 

  • Specius, Z. and Bulanova, G. P. (1987). Native iron in diamondiferous eclogites from the Udachnaya kimberlite pipe. Dokl. Akad. Nauk SSSR, 294, 1445 – 8.

    CAS  Google Scholar 

  • Sunagawa, I. (1969). Diamonds—Their Genesis and Properties. Maruzen, Tokyo.

    Google Scholar 

  • Taylor, W. R. and Green, D. H. (1988). Measurement of reduced peridotite- C-O-H solidus and implications for redox melting of the mantle. Nature, 332, 349 – 52.

    Article  CAS  Google Scholar 

  • Trofimov, V. S. (1972). Origin of diamonds. Geol. Zh., 32, 146 – 8.

    CAS  Google Scholar 

  • Tsong, I. S. T., Knipping, U., Loxton, C. M. and Magee, C. W. (1985). Carbon on surfaces of magnesium oxide and olivine single crystals. Diffusion from the bulk or surface contamination? Phys. Chem. Minerals, 12, 261 – 70.

    Article  CAS  Google Scholar 

  • Tsong, I. S. T. and Knipping, U. (1986). ‘Solute carbon and carbon segregation in magnesium oxide single crystals-a secondary ion mass spectrometry study’ by F. Freund. Comments. Phys. Chem. Minerals, 13, 277–9.

    Article  CAS  Google Scholar 

  • Tuttle, D. L. (1973). Inclusions in Herkimer ‘diamond’. Lapidary J., Sept., 966 – 76.

    Google Scholar 

  • Voznyak, D. K., Gritsyk, V. V., Kvasnitsa, V. N. and Galaburda, Yu. A. (1973). Inclusions of petroleum in Marmarosh diamonds. Dopov. Akad. Nauk Ukr. RDR, Ser. B., 35, 1059 – 62.

    CAS  Google Scholar 

  • Watson, E. B., Sneeringer, M. A. and Ross, A. (1982). Diffusion of dissolved carbonate in magmas; experimental results and applications. Earth and Planet. Sci. Lett., 61, 346.

    Article  CAS  Google Scholar 

  • Watson, E. B. (1986). Immobility of reduced carbon along grain boundaries in dunite. Geophys. Res. Lett., 13, 529 – 32.

    Article  CAS  Google Scholar 

  • Weis, P. L., Friedman, I. and Gleason, J. P. (1981). The origin of epigenetic graphite: evidence from isotopes. Geochim. Cosmochim. Acta, 45, 2325 - 32.

    Article  CAS  Google Scholar 

  • Wenlandt, R. F. and Mysen, B. O., Melting phase relations of natural peridotite + CO2 as a function of degree of partial melting at 15 and 30 kb. Am. Mineral, 65, 37 – 44 (1980).

    Google Scholar 

  • Wentorf, R. H., Jr. and Bovenkerk, H. P. (1961). On the origin of natural diamonds. Astrophys. J., 134, 995 – 1005.

    Article  CAS  Google Scholar 

  • Wentorf, R. H., Jr. (1966). Solutions of carbon at high pressure. Ber. Bun. fur Phys. Chem., 70, 975 – 82.

    CAS  Google Scholar 

  • Wintsch, R. P., O’Connell, A. F., Ransom, B. L. and Wiechmann, M. J. (1981). Evidence for the influence of f(CH4) on the crystallinity of disseminated carbon in greenschist facies rocks, Rhode Island, U.S.A. Contrib. Mineral. Petrol., 77, 207 – 13.

    Article  CAS  Google Scholar 

  • Woermann, E., Knecht, B. and Rosenhauer, M. (1981). Diamond synthesis, U.S. Patent 4,254,091; filed 8/16/79; issued 3/3/81.

    Google Scholar 

  • Woermann, E., Knecht, B., Rosenhauer, M. and Ulmer, G. C. (1977). The stability of graphite in the system C-O. Extended Abstract. Second International Kimberlite Conference, 1977.

    Google Scholar 

  • Woermann, E., Knecht, B., Rosenhauer, M. and Ulmer, G. C. (1978). Kohlenstoff-Karbonatgleichgewichte und der Redoxzustand im Erdmantel. Fortschr. Mineralogie Beiheft, 56, 144 – 5.

    CAS  Google Scholar 

  • Woods, G. S. and Collins, A. T. (1983). Infrared absorption spectra of hydrogen complexes in type I diamonds. J. Phys. Chem. Solids, 44, 471 – 5.

    Article  CAS  Google Scholar 

  • Wyllie, P. J. and Tuttle, O. F. (1959). Synthetic carbonatite magma. Nature, 183, 770.

    Article  CAS  Google Scholar 

  • Wyllie, P. J. and Tuttle, O. F. (1959). Melting of calcite in the presence of water. Am. Mineral., 44, 453 – 9.

    CAS  Google Scholar 

  • Wyllie, P. J. (1979). Magmas and volatile components. Am. Mineral., 64, 469 – 500.

    CAS  Google Scholar 

  • Wyllie, P. J., Huang, W. L., Otto, J. and Byrnes, A. P (1984). Carbonation of peridotites and decarbonation of siliceous dolomites represented in the system calcium oxide-magnesium oxide-silicon dioxide-carbon dioxide to 30 kbar. Tectonophysics, 100, 359 – 88.

    Article  Google Scholar 

  • Wyllie, P. J. (1987). Discussion of recent papers on carbonated peridotite, bearing on mantle metasomatism and magmatism. Earth Planet. Sci. Lett., 82, 391 – 7.

    Article  CAS  Google Scholar 

  • Ziegenbein, D. and Johannes, W. (1980). Graphite in C-H-O fluids: an unsuitable compound to buffer fluid composition at temperatures up to 700°C. Neues Jahrb. Min., Mh., 8, 289 – 305.

    Google Scholar 

  • Ziegenbein, D. and Johannes, W. (1982). Activities of carbon dioxide in supercritical carbon dioxide-water mixtures, derived from high-pressure mineral equilibrium data, High-Pressure Res. Geosci., Results Priority Program Proc. Its Final Colloq. ed. W. Schreyer, Schweizerbart, Stuttgart, pp. 493–500.

    Google Scholar 

  • Zimin, S. S. and Zalishchak, B. L. (1986). New model of the formation of carbonatites and ores related to them. Dokl. Akad. Nauk SSSR, 289, 700 – 2.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Elsevier Science Publishers Ltd

About this chapter

Cite this chapter

DeVries, R.C. (1990). Hydrothermal Carbon: A Review from Carbon in Herkimer ‘Diamonds’ to that in Real Diamonds. In: Sōmiya, S. (eds) Advanced Ceramics III. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0763-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0763-8_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6829-1

  • Online ISBN: 978-94-009-0763-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics