Skip to main content

Abstract

The fuel system and inlet manifold are servants of the spark-ignition (SI) engine in that they are called upon to deliver to each cylinder the required amount of fuel mixed with an appropriate quantity of air, served in a digestible form. The objective of this chapter is to review current knowledge of the processes involved in the supply of this fuel/air mixture. This topic is one that has been researched continuously, but not always with the highest priority, during the evolution of the SI engine; it has demanded particular attention recently due to the development of lean-burn engines. Lean-burn engines not only require tighter tolerances on air: fuel ratio variations, both between cylinders and from one cycle to the next, but they are also sensitive to the mixture preparation (i.e. the percentage of fuel vaporized, droplet size and distribution, etc.) within the cylinder. The starting point of this chapter will be a discussion of the requirements of SI engines in terms of mixture preparation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

b 1 :

Term in mean diameter expression

b 2 :

Term in mean diameter expression

c 1 :

Constant

c 2 :

Constant

d :

Diameter of orifice

D :

Diameter of drop

D 32 :

Sauter mean diameter of drops

D 30 :

Volume mean diameter of drops

\( \bar D \) :

Characteristic diameter (Rosin & Rammler distribution)

D :

Coefficient of diffusion

k :

Thermal conductivity

k 1 :

Constant of proportionality

k v :

Coefficient of mass transfer

L :

Latent heat of vaporization

k v :

Coefficient of mass transfer

m :

Mass

M :

Molecular mass

n :

Term in Rosin & Rammler distribution

N :

Number of drops

P :

Total pressure

p :

Partial pressure

p r :

Partial pressure of vapour at surface of drop

p :

Partial pressure of vapour at infinite distance

q :

Heat flow rate

Q :

Volume flow rate

D :

Universal gas constant

t :

Time

T :

Temperature

VF :

Volume fraction

Nu :

Nusselt number (heat transfer)

Nu′ :

Nusselt number (mass transfer)

Pr :

Prandtl number

Re :

Reynolds number

Sc :

Schmidt number

Γ:

Gamma function

μ:

Viscosity

ν:

Relative velocity

ρ:

Density

σ:

Surface tension

σ:

Surface tension

A :

Air

L :

Liquid

max:

Maximum

i :

Initial

v :

Vapour

References

  1. Dodd, A. E. & Wisdom, J. W., Effect of mixture quality on exhaust emissions from single-cylinder engines. Proc. Instn Mech. Engrs, 183, Part 3E (1969) 117–32.

    Google Scholar 

  2. Beale, N. R. & Hodgetts, D., Inlet valve throttling and the effects of mixture preparation and turbulence on the exhaust gas emissions of a spark ignition engine. Proc. Instn Mech. Engrs, 190, 1/76 (1976) 13–21.

    Article  Google Scholar 

  3. Bowman, T. J., Chopra, A. S. & Kunisch, K., Performance and powertrain development of an engine for integrated powertrain control. Proc. FISITA Congress, Belgrade, 1986, Paper 865028.

    Google Scholar 

  4. Weast, R. C., Handbook of Chemistry and Physics, 65th edition, CRC Press, Florida, 1984.

    Google Scholar 

  5. Mugele, R. A. & Evans, H. D., Droplet size distribution in sprays. Indust. Eng. Chem., 43(6) (1951) 1317–24.

    Article  Google Scholar 

  6. Elkotb, M. M., Fuel atomization for spray modelling. Proc. Energy Combust. Sci., 8 (1982) 61–91.

    Article  Google Scholar 

  7. Wallis, G. B., One-dimensional Two-phase Flow, McGraw-Hill, New York, 1969, 377 pp.

    Google Scholar 

  8. Ingebo, R. D. & Foster, H. H., Drop size distribution for crosscurrent breakup of liquid jets in airstreams. NACA Technical Note 4087, 1957.

    Google Scholar 

  9. Prandtl, L., Essentials of Fluid Dynamics. Blackie, London, 1952, 328 pp.

    MATH  Google Scholar 

  10. Hinze, J. O., Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. Am. Inst. Chem. Engrs J., 1(3) (1955) 289–301.

    Google Scholar 

  11. Richards, G., Sojka, P. E. & Lefebvre, A. H., Dropsize studies in a radially-uniform fuel spray. SAE paper 852083, 1985.

    Book  Google Scholar 

  12. Knight, P. G. G., The SU carburettor. Proc. Instn Mech. Engrs, Automobile Div., No. 3 (1962–3) 128–40.

    Google Scholar 

  13. Nightingale, C. & Tsatsami, V., Improved mixture preparation for better cold starting. Automotive Engr, 9(5) (1984) 97–100.

    Google Scholar 

  14. Lenz, H. P., Uber Grundlagen der Zerstaubung und ihre Anwendung bei Vergasern von Ottomotoren (Atomization and its application to four-stroke petrol engines) VDI Zeitschrift, 6, No. 14 (December 1967).

    Google Scholar 

  15. Finlay, I. C., McMillan, T., Bannell, J. L. K. & Nightingale, C., The measurement of the sizes of droplets leaving the throttle plate of an air-valve carburettor, J. Phys. D: Appl. Phys., 18 (1985) 1213–22.

    Article  Google Scholar 

  16. Takeda, K., Shiozawa, K., Oishi, K. & Inoue, T., Toyota Central Injection (Ci) system for lean combustion and high transient response. SAE paper 851675, 1985.

    Book  Google Scholar 

  17. Godsave, G. A. E., The combustion of drops in a fuel spray. Memorandum No. M. 95, National Gas Turbine Establishment, Pyestock, UK, 1950.

    Google Scholar 

  18. Fuchs, N. A., Evaporation and Droplet Growth in Gaseous Media. Pergamon Press, New York, 1959.

    Google Scholar 

  19. El Wakil, M. M., Uyehara, O. A. & Myers, P. S., A theoretical investigation of the heating-up period of injected fuel droplets vaporizing in air. NACA Technical Note 3179, 1954.

    Google Scholar 

  20. Ranz, W. E. & Marshall, W. R., Evaporation from drops. Chem. Engng Prog., 48(3) (1952) 141–6

    Google Scholar 

  21. Ranz, W. E. & Marshall, W. R., Evaporation from drops. Chem. Engng Prog., 48(4) 173–80.

    Google Scholar 

  22. Boam, D. J. & Finlay, I. C., A computer model of fuel evaporation in the intake system of a carburetted petrol engine. Instn. Mech. Engrs Conference on Fuel Economy and Emissions of Lean Burn Engines, C89/79, 1979.

    Google Scholar 

  23. Low, S. C., Baruah, P. C. & Winterbone, D. E., Transportation of liquid fuel droplets in the pulsative air flow within the s.i. engine intake manifold. SAE paper 810497, 1981.

    Book  Google Scholar 

  24. Trayser, D. A., Gieseke, J. A., Fischer, R. D. & Creswick, F. A., A study of the influence of fuel atomization, vaporization, and mixing processes on pollutant emissions from motor-vehicle powerplants—Phases 1 & 2. Battelle Memorial Institute, Columbus, Ohio, April 1969 and January 1972.

    Google Scholar 

  25. Hires, S. D. & Overington, M. T., Transient mixture strength excursions—an investigation of their causes and the development of a constant mixture strength fueling strategy, SAE paper 810495, 1981.

    Book  Google Scholar 

  26. Wu, H., Aquino, C. F. & Chou, G. L., A 1·6 liter engine and intake manifold dynamic model. Am. Soc. Mech. Engrs, paper 83-WA/DSC-39, 1983.

    Google Scholar 

  27. Aquino, C. F., Transient A/F control characteristics of the 5 liter central fuel injection engine. SAE paper 810494, 1981.

    Book  Google Scholar 

  28. Demel, H. & Lenz, H. P., Kraftstoffeinsparung durch verbesserte Gemischverteilung an Motoren mit zentraler Gemischbildung. Proceedings of XIX FISITA Congress, Paper 82129, 1982. (Reduction of fuel consumption through improved mixture distribution in engines with central mixture formation, MIRA Translation 45/83.)

    Google Scholar 

  29. Hansel, J. G., Lean automotive engine operation—hydrocarbon exhaust emissions and combustion characteristics. SAE paper 710164, 1971.

    Book  Google Scholar 

  30. Paganelli, J., PTC ceramic heaters in automotive controls. SAE paper 840143, 1984.

    Book  Google Scholar 

  31. Aquino, C. F., The design and development of the upper-pivoted sonic carburettor. SAE paper 780078, 1978.

    Book  Google Scholar 

  32. Jante, A., Uber Gemischverteilung an Ottomotoren, Automobil Industrie, 3/76 (1976) 57–67.

    Google Scholar 

  33. Giffen, E. & Muraszew, A., The Atomization of Liquid Fuels. Chapman & Hall, London, 1953.

    Google Scholar 

  34. Jones, A. R., A review of drop size measurements—the application of techniques to dense fuel sprays. Prog. Energy Combust. Sci., 3 (1977) 225–34, Pergamon Press.

    Article  Google Scholar 

  35. Lo, R. S., Matysiewicz, E. J. & Hotham, G. A., Fuel injector atomization using laser imaging techniques. SAE paper 851673, 1985.

    Book  Google Scholar 

  36. Swithenbank, J. et al., A laser diagnostic for the measurement of droplet and particle size distribution. AIAA 14th Aerospace Sciences Meeting, Washington, DC, 1976.

    Google Scholar 

  37. Hewitt, G. F., Measurement of Two-phase Parameters. Academic Press, London, 1978.

    Google Scholar 

  38. Finlay, I. C., McMillan, T. & Bannell, J. L. K., Liquid fuel distribution in the region of the throttle plate of an air valve carburettor. National Engineering Laboratory report Y5/32, East Kilbride, Scotland, 1979.

    Google Scholar 

  39. Nightingale, C. & Tsatsami, V., Improved cold-starting prospects—by studying wall film flow. Automotive Engr, 11(4) (1986) 28–34.

    Google Scholar 

  40. Hayashi, S. & Norihiro, S., Measurement of fuel liquid-film flow in intake pipe of two-stroke motorcycle engine using conductive probe. SAE paper 840554, 1984.

    Book  Google Scholar 

  41. Demel, H., Diem, E. & Lenz, H. P., Quantitative Messung des Kraftstoffilms in Saugrohren von Ottomotoren. Motortechnische Z., 44 (7/8) (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Elsevier Science Publishers Ltd

About this chapter

Cite this chapter

Nightingale, C.J.E. (1990). Mixture Preparation for Spark-ignition Engines. In: Weaving, J.H. (eds) Internal Combustion Engineering: Science & Technology. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0749-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0749-2_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6822-2

  • Online ISBN: 978-94-009-0749-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics