Skip to main content

The Application of Wave Action Techniques to Reciprocating Engines

  • Chapter
Book cover Internal Combustion Engineering: Science & Technology

Abstract

The concept of waves in the flow of a compressible fluid was introduced in Chapter 12. It was shown that the wave equations can be solved by a number of methods, and that techniques exist for small waves, as well as homentropic and non-homentropic flow. This chapter will describe the way in which wave action affects the performance of reciprocating engines, and how it can be used to improve that performance. The reader is referred to Chapter 12 for a detailed description of wave action methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Broome, D., Induction ram. Part 1: The inertia and wave effects of ram. Automobile Engr, April 1969 130–33; Part 2: Inertial aspects of induction ram. ibid., May 1969, 180–84; Part 3: Wave phenomena and design of ram intake systems. Ibid., June 1969, 262–7.

    Google Scholar 

  2. Williams, T. J., Induction ramming of reciprocating engines. Engineering, 20 March 1959, 370–72.

    Google Scholar 

  3. Taylor, C. F., Livengood, J. C. & Tsai, D. H., Dynamics of the inlet system of a four-stroke single cylinder engine. Trans. ASME, 77 (1955) 1133–45.

    Google Scholar 

  4. Lighthill, M. J., Waves in Fluids. Cambridge University Press, 1978.

    MATH  Google Scholar 

  5. Cser, G., Some results of combined charging applications. Proc. Instn Mech. Engrs, Conf. on Turbocharging and Turbochargers, C64/78, London, 1978, 141–6.

    Google Scholar 

  6. Watson, N., Resonant intake and variable geometry turbocharging systems for a V8 diesel engine. Proc. Instn Mech. Engrs, Conf. on Turbocharging and Turbochargers, C40/82, London, 1982, 101–13.

    Google Scholar 

  7. Brands, M. C., Helmholtz tuned induction systems for turbocharged diesel engines. SAE paper 790069. Also in Turbochargers and Turbocharged Engines. SAE Publication SP 442, 1979, 139–47.

    Book  Google Scholar 

  8. Vorum, P. C., Short pipe manifold design for four stroke engines. ASME paper 76-WA/DGP-4, 1976.

    Google Scholar 

  9. Vorum, P. C., Short pipe manifold design for four-stroke engines—2. J. Engng Power, Trans. ASME, 102(4) (October 1980) 836–41.

    Article  Google Scholar 

  10. Chen, A. & Gu, H.-Z., Simulation of a tuned induction system and the structural parameters analysis. Proc. Instn Mech. Engrs, Conf. on Turbocharging and Turbochargers, London, 1986.

    Google Scholar 

  11. Knecht, W. & Signer, M., Development of the Saurer D4KT-B diesel engine. SAE paper 810342, 1981.

    Book  Google Scholar 

  12. Nikpour, B., Heat release and gas flow in a petrol engine. MSc Dissertation, University of Manchester, 1985.

    Google Scholar 

  13. Taylor, C. F., The Internal Combustion Engine in Theory and Practice, vol. 1. MIT Press, Cambridge, Massachusetts, 1977.

    Google Scholar 

  14. Ferguson, C. R., Internal Combustion Engines, Applied Thermosciences. John Wiley, New York, 1986.

    Google Scholar 

  15. Tabaczynski, R. J., Effects of inlet and exhaust system design on engine performance. SAE paper 821577, February 1982.

    Book  Google Scholar 

  16. Fukutani, I. & Watanabe, E., An analysis of the volumetric efficiency characteristics of 4-stroke cycle engines using the mean inlet Mach no. SAE paper 790484; Trans. SAE 88 (1979) 1756–82.

    Google Scholar 

  17. Prosser, T. G., Induction ramming a motored high speed four-stroke reciprocating engine—influence of inlet port pressure waves on volumetric efficiency. Proc. Instn Mech. Engrs, 188 (1974) 577–84.

    Article  Google Scholar 

  18. Adams, T. G., Effect of exhaust system design on engine performance. SAE paper 800319, Detroit, February 1980.

    Book  Google Scholar 

  19. Hopkinson, B., The charging of two-cycle engines Trans. NE Coast Inst. Engrs. Shipbldrs, 30 (1914) 433–58.

    Google Scholar 

  20. Benson, R. S. & Whitehouse, N. D., Internal Combustion Engines, vols 1 & 2. Pergamon Press, Oxford, 1979.

    Google Scholar 

  21. Pearce, J. F., Harnes, R. J. & Merrion, D. F., Two-stroke cycle diesel engine fuel economy improvement and emission reduction. SAE paper 770255, Detroit, February, 1977.

    Book  Google Scholar 

  22. Horlock, J. H. & Winterbone, D. E., The Thermodynamics and Gas Dynamics of Internal Combustion Engines, vol. II. Oxford University Press, 1986.

    Google Scholar 

  23. Lilly, L. R. C. (ed.), Diesel Engine Reference Book. Butterworth, London, 1984.

    Google Scholar 

  24. Benson, R. S., The Thermodynamics and Gas Dynamics of Internal Combustion Engines, vol. I, eds J. H. Horlock & D. E. Winterbone, Oxford University Press, 1982.

    Google Scholar 

  25. Poloni, M., Winterbone, D. E. & Nichols, J. R., Comparison of unsteady flow calculations in a pipe by the method of characteristics and the two-step differential Lax-Wendroff method. Int. J. Mech. Sci., 29(5) (1987) 367–78.

    Google Scholar 

  26. Azuma, T., Yura, T. & Tokunaga, Y., Some aspects of constant pressure turbocharged marine diesel engines of medium and low speed. J. Engng Power, Trans. ASME, 105(3) (1983) 697–711.

    Article  Google Scholar 

  27. Annand, W. J. D. & Roe, G., Gas Flow in the Internal Combustion Engine. G. T. Foulis, Yeovil, 1974.

    Google Scholar 

  28. Abthoff, J., Bruggemann, H., Huttebraucker, D.-H. & Zeilinger, K., Daimler-Benz 2.3 litre, 16-valve high performance engine. SAE paper 841226, 1984.

    Book  Google Scholar 

  29. Matsumoto, I. & Ohata, A., Variable induction systems to improve volumetric efficiency at low and/or medium engine speeds. SAE paper 860100, Detroit, February 1986.

    Book  Google Scholar 

  30. Engleman, H. W., Design of a tuned intake manifold. ASME paper 73-WA/DGP-2, 1973.

    Google Scholar 

  31. Ohata, A. & Ishida, Y., Dynamic inlet pressure and volumetric efficiency of four-cycle four cylinder engine. SAE paper 820407, Detroit, 1982.

    Book  Google Scholar 

  32. Chapman, M., Novak, J. M. & Stein, R. A., A non-linear acoustic model of inlet and exhaust flow in multi-cylinder internal combustion engines. ASME paper 83-WA/DSG-14, 1983.

    Google Scholar 

  33. Worth, D. R., Investigation of inlet manifold tuning of an automotive spark ignition engine. MSc thesis, Univ. Manchester, 1988.

    Google Scholar 

  34. Boucher, R. F. & Kitsios, E. E., Simulation of fluid network dynamics by transmission line modelling. Proc. Instn Mech. Engrs, 200 (1986) 21–9.

    Google Scholar 

  35. Auslander, D. M., Distributed system simulation with bilateral delay-line models. Trans. ASME, J. Basic Engng, June 1968, 195–200.

    Google Scholar 

  36. Soedel, W., Gas pulsations in compressor and engine manifolds. Short course text, Ray W. Herrick Laboratories, School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, 1978.

    Google Scholar 

  37. Bingham, J. F. & Blair, G. P., An improved branched pipe model for multi-cylinder automotive engine calculations. Proc. Instn Mech. Engrs, 199, No. D1, (1985) 65–77.

    Google Scholar 

  38. Bingham, J. F., Intake system design using a validated internal combustion engine computer model. Paper C25/87, Instn Mech. Engrs Conf. ‘Computers in Engine Technology’, Cambridge, UK, March 1986, pp. 111–22.

    Google Scholar 

  39. Takeyama, S., Ishizawa, S. & Yoshikawa, Y., Gas exchange simulation model for improving charging efficiency of four-valve internal combustion engine. Paper C28/87, Instn Mech. Engrs Conf. Computers in Engine Technology, Cambridge, UK, March 1986, 123–30.

    Google Scholar 

  40. Tosa, Y., Shimoda, K. & Oikawa, H., Calculation of two-dimensional unsteady flows in inlet pipe system and its application for V-8 resonant intake system. Int. Symp. Flows in Internal Combustion Engines—III, ASME, Miami Beach, 1985, pp. 63–70.

    Google Scholar 

  41. Chapman, M., Novak, J. M. & Stein, R. A., Numerical modelling of inlet and exhaust flows in multi-cylinder internal combustion engines. In Flows in Internal Combustion Engines. ASME, Phoenix, Arizona, November 1982, pp. 9–20.

    Google Scholar 

  42. Walter, G. A., & Chapman, M., Numerical simulation of the exhaust flow from a single cylinder of a two cycle engine. SAE paper 790243, Detroit, 1979.

    Book  Google Scholar 

  43. Poloni, M., Winterbone, D. E. & Nichols, J. R., Calculation of pressure and temperature discontinuity in a pipe by the method of characteristics and the two-step differential Lax—Wendroff method. Int. Symp. Flows in Internal Combustion Engines, FED, Vol. 62. ASME Winter Annual Meeting, Boston, 13–18 December 1987.

    Google Scholar 

  44. Sierens, R., van Hove, W. & Snauwert, P., Comparison of measured and calculated gas velocities in the inlet channel of a single cylinder reciprocating engine. Proc. Instn Mech. Engrs, 198A(1) (1984) 61–9.

    Google Scholar 

  45. Lakshminarayananan, P. A., Janakiraman, P. A., Gajendra Babu, M. K. & Murthy, B. S., Prediction of gas exchange processes in a single cylinder internal combustion engine. SAE paper 790359, June 1979.

    Book  Google Scholar 

  46. Gajendra Babu, M. K. & Murthy, B., Simulation and evaluation of a four-stroke single cylinder spark-ignition engine. SAE paper 750687, Trans. SAE, 84 (1975) 1631.

    Google Scholar 

  47. Sato, A., Suenaga, K., Noda, M. & Maeda, Y., Advanced boost-up in Hino EP100 turbocharged and charge-cooled diesel engine. SAE paper 870298, Detroit, February 1987.

    Book  Google Scholar 

  48. Blair, G. P. & Goulburn, J. R., An unsteady flow analysis of exhaust systems for multicylinder automobile engines. SAE paper 690469, 1969.

    Book  Google Scholar 

  49. Takizawa, M., Uno, T., Oue, T. & Yura, T., A study of gas exchange process simulation of an automitive multi-cylinder internal combustion engine. SAE paper 820410, 1982.

    Book  Google Scholar 

  50. Benson, R. S. & Baruah, P. C., Performance and emission predictions for a multi-cylinder spark ignition engine. Proc. Instn Mech. Engrs 191, 32/77, (1977) 339–54.

    Article  Google Scholar 

  51. Baruah, P. C., Benson, R. S. & Balouch, S. K., Performance and emission predictions for a multi-cylinder spark-ignition engine with exhaust gas recirculation. SAE paper 780663, 1978.

    Book  Google Scholar 

  52. Baruah, P. C., Benson, R. S. & Gupta, H. N., Performance and emission predictions for a multi-cylinder spark-ignition engine with catalytic converter. SAE paper 780672, 1978.

    Google Scholar 

  53. Low, S. C. & Baruah, P. C., A generalized computer aided design package for I.C. engine manifold system. SAE paper 810498, 1981.

    Book  Google Scholar 

  54. Herring, P., Sequential turbocharging of the MTU 1163 engine. Trans. Instn Mar. Engrs, 100 (1988) 145–56.

    Google Scholar 

  55. Benson, R. S. & Horlock, J. H., The matching of two-stroke engines and turbochangers. CIMAC, Copenhagen, 1962, p. 464.

    Google Scholar 

  56. Alexander, G. I., Nichols, J. R., Winterbone, D. E. & Sinha, S. K., Optimization of the design of an exhaust manifold system for improved turbocharger performance. Instn Mech. Engrs Conf. on Turbocharging and Turbochargers, C48/82, 1982, pp. 175–83.

    Google Scholar 

  57. Winterbone, D. E., Alexander, G. I. & Nichols, J. R., Developments in methods of considering wave action in pipes connected to IC engines. Int. Symp. Flows in internal combustion engines—III, ASME, Miami Beach, 1985, pp. 71–8.

    Google Scholar 

  58. Winterbone, D. E., Nichols, J. R. & Alexander, G. I., Efficiency of manifolds of turbocharged engines. Proc. Instn Mech. Engrs, 199 (D2) (1985) 137–49.

    Google Scholar 

  59. Haywood, R. L. E., Equilibrium Thermodynamics. John Wiley, Chichester, 1960.

    Google Scholar 

  60. Oldfield, S. G. & Watson, N., The influence of exhaust valve and port design on energy transfer to the turbocharger turbine. SAE paper 830151, 1983.

    Google Scholar 

  61. Büchi, A., French Patent No. 371281, 1905.

    Google Scholar 

  62. Payri, F., Desantes, J. M. & Boad, F., Prediction method of the operating conditions of a turbocharged diesel engine. Motorsympo. 86, April 1986, CSSR, pp. 22–24.

    Google Scholar 

  63. Benson, R. S. & Scrimshaw, K. H., An experimental investigation of non-steady flow in a radial gas turbine. Proc. Instn Mech. Engrs, 180, part 3J, paper 23 (1965–66) 74–85.

    Google Scholar 

  64. Dale, A. & Watson, N., Vaneless radial turbocharger turbine performance. Instn Mech. Engrs Conf. on Turbocharging and Turbochargers, paper C110/86, London, May 1986, pp. 65–76.

    Google Scholar 

  65. Janota, M. S., Hallam, A. K., Brock, E. K. & Dexter, S. G., The prediction of diesel engine performance and combustion chamber component temperatures using digital computers. Proc. Instn Mech. Engrs, 182, 3L (1967–68) 58–70.

    Google Scholar 

  66. Azuma, T., Tokunaga, Y. & Yura, T. Y., Characteristics of exhaust gas pulsation of constant pressure turbocharged diesel engines. Trans. ASME, J. Engng Power, 102 (October 1980) 827–35.

    Article  Google Scholar 

  67. Janota, M. S. & Watson, N., Pulse converters—a method of improving the performance of the turbocharged diesel engine. Proc. Instn Mech. Engrs, 187, 51/73 (1973) 635–47.

    Google Scholar 

  68. Watson, N. & Janota, M. R., Non-steady flow in an exhaust system with a pulse converter junction. Instn Mech. Engrs Conf. Internal Flows, Paper 25, Salford, 1971, pp. D17–D28.

    Google Scholar 

  69. Benson, R. S. & Alexander, G. I., The application of pulse converters to automotive four-stroke cycle engines. SAE paper 770034, Detroit, 1977.

    Book  Google Scholar 

  70. Borilla, Y., Some aspects of performance optimization of the sequentially turbocharged highly-rated truck engine with turbochargers of unequal size and a pulse converter. Instn Mech. Engrs Conf. on Turbocharging and Turbochargers, paper C105/86, 1986, pp. 251–60.

    Google Scholar 

  71. Birmann, R., Exhaust energy converting means for internal combustion engines. US Patent 2406656, 1946.

    Google Scholar 

  72. Curtil, R. & Magnet, J., Exhaust pipe system for high pressure charging. Instn Mech. Engrs Conf. on Turbocharging and Turbochargers, C65/78, 1978, pp. 147–58.

    Google Scholar 

  73. Chan, C. L., Winterbone, D. E., Nichols, J. R. & Alexander, G. I., A detailed study of compact exhaust manifolds applied to automotive diesel engines. Proc Instn Mech. Engrs, Conf. on Turbocharging and Turbochargers, C113/86, 1986, pp. 269–81.

    Google Scholar 

  74. Winterbone, D. E., Nichols, J. R. & Alexander, G. I., The evaluation of the performance of exhaust systems equipped with integral pulse converters. 16th International Congress on Internal Combustion Engines (CIMAC), Oslo, June 1985.

    Google Scholar 

  75. Mayer, A., The Comprex supercharger—a simple machine for a highly complex thermodynamic process. Brown Boveri Review, 8 (1987) 422–30.

    Google Scholar 

  76. Lutz, T. W. & Scholz, R., Supercharging vehicle diesel engines by the Comprex system. Proc. Instn Mech. Engrs, (1968).

    Google Scholar 

  77. Azoury, P. H., An introduction to the dynamic pressure exchanger. Proc. Instn Mech. Engrs, 180(1) (1965–66) 451–80.

    Article  Google Scholar 

  78. Azoury, P. H. & Hai, S. M., Computerized analysis of dynamic pressure exchanger scavenge processes. Proc. Instn Mech. Engrs, 189 (1975) 149–58.

    Article  Google Scholar 

  79. Spalding, D. B., A procedure for calculating the unsteady, one-dimensional flow of a compressible fluid, with allowance for the effects of heat transfer and friction. Report no. UF/TN/D/2, Imperial College, London, 1969.

    Google Scholar 

  80. Pearson, R. D., Pressure exchangers and pressure exchange engines. In The Thermodynamics and Gas Dynamics of Internal Combustion Engines, vol. II, ed. J. H. Horlock & D. E. Winterbone. Oxford University Press, 1986, Chapter 16.

    Google Scholar 

  81. Jenny, E. & Naguib, M., Development of the Comprex pressure-wave supercharger: in the tradition of thermal turbomachinery. Brown Boveri Review, 8 (1987) 416–21.

    Google Scholar 

  82. Waleffe, J., Jenny, E. & Muller, K., Brennkraftmaschine mit einem als Aufladegerat wirkenden. Drucktauscher Swiss Patent 378595, August 1960.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Elsevier Science Publishers Ltd

About this chapter

Cite this chapter

Winterbone, D.E. (1990). The Application of Wave Action Techniques to Reciprocating Engines. In: Weaving, J.H. (eds) Internal Combustion Engineering: Science & Technology. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0749-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0749-2_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6822-2

  • Online ISBN: 978-94-009-0749-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics