Skip to main content

Effects of Applied Pressure on Densification During Sintering in the Presence of Liquid Phase

  • Chapter
Book cover Sintering Key Papers

Abstract

Experimental measurements of the effects of an applied pressure on sintering of powdered materials containing a liquid phase indicate that the applied pressure can be effective by: (a) increasing the extent and rate of particle rearrangement, (b) increasing the rate of solution at particle contacts, and (c) causing plastic flow within the solid particles. Which of these processes predominates depends on the characteristics of each particular system and on the level of applied pressure.

Presented ath the Sixty-Fourth Annual Meeting, The American Ceramic Society, New York, N.Y., April 30, 1962 (Symposium o Kinetics of Ceramic Society, No.6-2s-2). Part of this paper was taken from a thesis submitted by J. M. Woulbroun in partial fulfillment of the requirements for the Master of Science degree in ceramics, Massachussetts Institute of Technology

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. C. Kuczynski, ‘Self-Diffusion in Sintering of Metallic Particles’, J. Metals, 1 [2]; Trans. AIME, 185 [2] 169-78 (1949).

    Google Scholar 

  2. W. D. Kingery and M. Berg, ‘Study of the Initial Stages of Sintering Solids by Viscous Flow, Evaporation-Condensation, and Self-Diffusion’, J. Appl. Phys., 26 [10] 1205–12 (1955); Ceram. Abstr., 1956, February, p. 45c.

    Article  Google Scholar 

  3. J. E. Burke, ‘Role of Grain Boundaries in Sintering’, J. Am. Ceram. Soc., 40 [3] 80–85 (1957).

    Article  Google Scholar 

  4. R. L. Coble, ‘Initial Sintering of Alumina and Hematite’, J. Am. Ceram. Soc., 41 [2] 55–62 (1958).

    Article  Google Scholar 

  5. R. L. Coble, ‘Sintering Crystalline Solids: I, Intermediate and Final State Diffusion Models’, J. Appl Phys., 32 [5] 787–92 (1961); Ceram. Abstr1961, November, p. 274f.

    Article  Google Scholar 

  6. W. D. Kingery, ‘Densification During Sintering in the Presence of a Liquid Phase: I, Theory’, J. Appl Phys., 30 [3] 301–306 (1959); Ceram. Abstr., 1960, July, p. 171c.

    Article  Google Scholar 

  7. W. D. Kingery and M. D. Narasimhan, ‘Densification During Sintering in the Presence of a Liquid Phase: II, Experimental’, J. Appl. Phys., 30 [3] 307–10 (1959); Ceram. Abstr., 1960, July, p. 171d.

    Article  Google Scholar 

  8. W. D. Kingery, E. Niki, and M. D. Narasimhan, ‘Sintering of Oxide and Carbide-Metal Compositions in Presence of a Liquid Phase’, J. Am. Ceram. Soc., 44 [1] 29–35 (1961).

    Article  Google Scholar 

  9. J. Wulff, J. H. Brophy, and L. A. Shepard, ‘The Nickel Activated Sintering of Tungsten’; p. 113 in Powder Metallurgy—Proceedings of an International Conference, New York, 1960. Edited by Werner Leszynski. Interscience Publishers, New York, 1961. 847 pp.; Ceram. Abstr., 1962, August, p. 203b.

    Google Scholar 

  10. P. Murray, D. T. Livey, and J. Williams, ‘Hot Pressing of Ceramics’; pp. 147–171 in Ceramic Fabrication Processes, (W.D. Kingery, editor). Technology Press of Massachusetts Institute of Technology and John Wiley & Sons, Inc., New York, 1958, 235 pp.; Ceram. Abstr., 1958, May, p. 123h.

    Google Scholar 

  11. J. K. Mackenzie and R. Shuttleworth, ‘Phenomenological Theory of Sintering’, Proc. Phys. Soc. (London), 62 [360B] 833–52 (1949); Ceram. Abstr., 1950, May, p. 108e.

    Google Scholar 

  12. G. E. Mangsen, W. A. Lambertson, and B. Best, ‘Hot Pressing of Aluminium Oxide’, J. Am. Ceram. Soc., 43 [2] 55–59 (I960).

    Google Scholar 

  13. Thomas Vasilos, ‘Hot Pressing of Fused Silica’, J. Am. Ceram. Soc., 43 [10] 517–19 (1960).

    Article  Google Scholar 

  14. J. Williams, ‘Hot Compacting of Metal Powders’, Symposium on Powder Metallurgy, 1954, Spec. Rept., No. 58, Iron Steel Inst., pp. 112-24 (published 1956). 390 pp.

    Google Scholar 

  15. E. J. Felten, ‘Hot Pressing of Alumina Powders at Low Temperatures’, J. Am. Ceram. Soc., 44 [8] 381–385 (1961).

    Article  Google Scholar 

  16. A. C. Vaughn, ‘Bi-Cu Bismuth Copper’; p. 1178 in Metals Handbook. Edited by Taylor Lyman. The American Society of Metals, Cleveland, Ohio, 1948. 1332 pp.

    Google Scholar 

  17. G. Baumé and W. Borowski, ‘Systems CH30H-H20’, J. Chim. Phys., 12, 276 (1914).

    Google Scholar 

  18. A. E. Gorum, E. R. Parker, and J. A. Pask, ‘Effect of Surface Conditions on Room-Temperature Ductility of Ionic Crystals’, J. Am. Ceram. Soc., 41 [5] 161–64 (1958).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Elsevier Science Publishers Ltd

About this chapter

Cite this chapter

Kingery, W.D., Woulbroun, J.M., Charvat, F.R. (1990). Effects of Applied Pressure on Densification During Sintering in the Presence of Liquid Phase. In: Sōmiya, S., Moriyoshi, Y. (eds) Sintering Key Papers. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0741-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0741-6_25

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6818-5

  • Online ISBN: 978-94-009-0741-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics