Skip to main content

Study of the Initial Stages of Sintering by Viscous Flow, Evaporation—Condensation, and Self-Diffusion

  • Chapter

Abstract

The mechanism of material transport in sintering can be elucidated in some cases by direct observation of the rate of interface growth and approach of centers between spherical particles. Measurements with glass, sodium chloride, and copper indicate that with these materials viscous flow, evaporation-condensation, and self-diffusion are the rate-determining mechanisms. Values of viscosity, vapor pressure, and diffusion constants have been determined, but calculations of diffusion constants from these data are subject to uncertainties of interpretation. A model is presented for the behavior of copper during the initial stages of sintering, which is in agreement with available experimental data, and which requires vacancy elimination at dislocations or grain boundaries. Data for refractory oxides indicate the importance of purity and fabrication pressure, but the sintering mechanism for these materials is not determined by the present data.

With funds form the U.S. Atomic Energy Commission under Contract No. AT(30-1)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. C. Kuczynski, Trans. Am. Inst. Mining Met. Engrs. 185, 169 (1949).

    Google Scholar 

  2. C. Herring, J. Appl. Phys. 21, 301 (1950).

    Article  CAS  Google Scholar 

  3. G. C. Kuczynski, J. Appl. Phys. 21, 632 (1950).

    Article  CAS  Google Scholar 

  4. G. Cohen and G. C. Kuczynski, J. Appl. Phys. 21, 1339 (1950).

    Article  CAS  Google Scholar 

  5. J. H. Dedrick and A. Gerds, J. Appl. Phys. 20, 1042 (1949).

    Article  CAS  Google Scholar 

  6. A. J. Shaler, Trans. Am. Inst. Mining Met. Engrs. 185, 796 (1949).

    Google Scholar 

  7. G. C. Kuczynski, J. Appl. Phys. 20, 1160 (1949).

    Article  CAS  Google Scholar 

  8. Alexander, Kuczynski, and Dawson, ‘Relations between Diffusion and Viscous Flow in Metals,’ p. 202, The Physics of Powder Metallurgy, W.E. Kingston, editor (McGraw-Hill Book Company, Inc., New York, 1951).

    Google Scholar 

  9. J. Frenkel, J. Phys. (U.S.S.R.) 9(5), 385 (1945).

    Google Scholar 

  10. N. Cabrera, Trans. Am. Inst. Mining Met. Engrs. 188, 667 (1950).

    Google Scholar 

  11. P. Schmed, Trans. Am. Inst. Mining Met. Engrs. 191, 245 (1951).

    Google Scholar 

  12. E. B. Wedmore, J. Inst. Elec. Engrs. (London) 61, App. IV (1923); 68, App. I (1930).

    Google Scholar 

  13. B. Y. Pines, J. Tech. Phys., U.S.S.R. 16, 737 (1946).

    CAS  Google Scholar 

  14. V. A. Ivensen, J. Tech. Phys., U.S.S.R. 17, 1301 (1947).

    CAS  Google Scholar 

  15. O. Kubashewski and E. L. Evans, Metallurgical Thermochemistry (Butterworth- Springer Ltd., London, 1951).

    Google Scholar 

  16. K. Endel and M. V. Ardenne, Z. Kolloid 104, 223 (1943).

    Article  Google Scholar 

  17. H. V. Mueller, Z. Physik. 96, 279, 307, 321 (1935).

    Article  Google Scholar 

  18. A. G. Smekal, ‘Mechanism of Crystal Growth,’ in The Physics of Powder Metallurgy, W.A. Kingston, editor. (McGraw-Hill Book Company, Inc., New York, 1951), Chap. 2.

    Google Scholar 

  19. Raynor, Thomassen, and Rouse, Trans. Am. Inst. Mining Met. Engrs. 30, 313 (1942).

    CAS  Google Scholar 

  20. M. S. Maier and H. R. Nelson, Trans. Am. Inst. Mining Met. Engrs. 147, 39 (1942).

    Google Scholar 

  21. D. V. Rollin, Phys. Rev. 55, 231 (1939).

    Article  CAS  Google Scholar 

  22. Steigman, Shackley, and Nix, Phys. Rev. 56, 13 (1939).

    Article  CAS  Google Scholar 

  23. Clark, Cannon, and White, Trans. Brit. Ceram. Soc. 52, 1 (1953).

    CAS  Google Scholar 

  24. A. P. Greenough, R. A. E. Tech. Note No. MET 151 (October, 1951).

    Google Scholar 

  25. B. H. Alexander and R. Balluffi, J. Metals 188, 1219 (1950).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Elsevier Science Publishers Ltd

About this chapter

Cite this chapter

Kingery, W.D., Berg, M. (1990). Study of the Initial Stages of Sintering by Viscous Flow, Evaporation—Condensation, and Self-Diffusion. In: Sōmiya, S., Moriyoshi, Y. (eds) Sintering Key Papers. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0741-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0741-6_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6818-5

  • Online ISBN: 978-94-009-0741-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics