Skip to main content

Microstructural Changes During Isothermal Aging of a Calcia Partially Stabilized Zirconia Alloy

  • Chapter
Book cover Sintering Key Papers
  • 1315 Accesses

Abstract

Lime-stabilized zirconia of a limited composition range can be strengthened by an isothermal aging treatment in which essentially pure tetragonal zirconia is precipitated f r o m a cubic zirconia matrix. The structural changes during the aging of an 8-4mol% CaO alloy at 1300°C are described here. Nucleation and growth of the equilibrium tetragonal phase are very rapid and are completed in a short time compared with the time required to reach the highest strengths. The principal structural change during the remainder of the aging process is particle coarsening. It is found that small particles maintain their tetragonal structure on cooling to room temperature, but particles larger than ≈ 9 0 nm transform to the stable monoclinic structure. The existence of the tetragonal phase at room temperature is explained by a balance among chemical, interfacial, and strain energies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.C. Garvie, J. Phys. Chem., 82(2) 218–24 (1978).

    Article  CAS  Google Scholar 

  2. E.C. Subbarao, H.S. Maiti and K.K. Srivastava, Phys. Status Solidi A, 21(9) 9–40 (1974).

    Article  CAS  Google Scholar 

  3. R.C. Garvie, R.H.J. Hannink and R.T. Pascoe, Nature (London), 258 (5537) 703–704 (1975).

    Article  CAS  Google Scholar 

  4. D.L. Porter and A.H. Heuer, J. Am. Ceram. Soc., 60(3-4), 183–84 (1977).

    Article  CAS  Google Scholar 

  5. R.T. Pascoe, R.H.J. Hannink and R.C. Garvie; pp. 447-54 in Science of Ceramics, Vol. 9. Edited by K.J. de Vries. The Nederlandse Keramische Vereniging, 1977.

    Google Scholar 

  6. R.C. Garvie, R.H.J. Hannink and R.T. Pascoe, Aust. Pat. Application No. 85680/75 (1979).

    Google Scholar 

  7. R.K. Stringer and R.T. Pascoe, Proc. Aust. Ceram. Conf., 1th, 1976.

    Google Scholar 

  8. R.C. Garvie, R.R. Hughan and R.T. Pascoe, Mater. Sci. Res., 11, 263–74 (1978).

    CAS  Google Scholar 

  9. R.C. Garvie and P.S. Nicholson, J. Am. Ceram. Soc., 55(6) 303–305 (1972).

    Article  CAS  Google Scholar 

  10. R.H.J. Hannink, J. Mater. Sci., 13, 2487–96 (1978).

    Article  CAS  Google Scholar 

  11. R.T. Pascoe and R.C. Garvie; pp. 774–84 in Ceramic Microstructures76. Edited by R.M. Fulrath and J.A. Pask. Westview, Boulder, Colo., 1977.

    Google Scholar 

  12. G.W. Greenwood, ‘The Mechanism of Phase Transformation in Crystalline Solids’, Monogr. and Rep. Series Inst. Met. (London), No. 33, 103-10 (1966).

    Google Scholar 

  13. I.M. Lifshits and V.V. Slyozov, J. Phys. Chem. Solids, 19(1-2), 35–50 (1961).

    Article  Google Scholar 

  14. C. Wagner, Z. Elektrochem., 65(7-8), 581–91 (1961).

    CAS  Google Scholar 

  15. J. Burke; pp. 140–41 in The Kinetics of Phase Transformations in Metals. Pergamon, Oxford, 1965.

    Google Scholar 

  16. W.H. Rhodes and R.E. Carter, J. Am. Ceram. Soc., 49(5) 244–49 (1966).

    Article  CAS  Google Scholar 

  17. A.G. Evans and T.G. Langdon, Prog. Mater. Sci., 21(3-4) 171–441 (1976).

    Article  CAS  Google Scholar 

  18. E.D. Whitney, J. Am. Ceram. Soc., 45(12) 612–13 (1962).

    Article  CAS  Google Scholar 

  19. E.D. Whitney, J. Electrochem. Soc., 112(1) 91–94 (1965).

    Article  CAS  Google Scholar 

  20. D.L. Porter, A.G. Evans and A.H. Heuer, Acta Metall, 27(10) 1649–54 (1979).

    Article  CAS  Google Scholar 

  21. D.J. Green, D.R. Maki and P.S. Nicholson, J. Am. Ceram. Soc., 57(3) 136–39 (1974).

    Article  CAS  Google Scholar 

  22. T. Mitsuhashi and Y. Fujiki, ibid., 56(9) 493 (1973).

    CAS  Google Scholar 

  23. J.P. Coughlin and E.G. King, J. Am. Chem. Soc., 72(5), 2262–65 (1950).

    Article  CAS  Google Scholar 

  24. R.W. Davidge and T.J. Green, J. Mater. Sci., 3, 629–34 (1968).

    Article  CAS  Google Scholar 

  25. A.G. Evans, A.H. Heuer and D.L. Porter, Proc. 4th Int. Conf. on Fracture, 1, 529–55 (1977).

    Google Scholar 

  26. E. Hornbogen, Acta Metall., 26, 147–52 (1978).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Elsevier Science Publishers Ltd

About this chapter

Cite this chapter

Hannink, R.H.J., Johnston, K.A., Pascoe, R.T., Garvie, R.C. (1990). Microstructural Changes During Isothermal Aging of a Calcia Partially Stabilized Zirconia Alloy. In: Sōmiya, S., Moriyoshi, Y. (eds) Sintering Key Papers. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0741-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0741-6_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6818-5

  • Online ISBN: 978-94-009-0741-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics