Skip to main content

Storage of the Donor Heart

  • Chapter

Abstract

The development of successful methods of myocardial protection during open heart operations has been one of the major advances in cardiac surgery. At present, cardioplegic arrest followed by simple storage in ice-cold saline provides good protection of the myocardium against ischemic damage for up to 4 hours, possibly a little longer. This allows for transport of a donor heart from one hospital to another over distances of up to approximately 2000 km (1250 miles), but necessitates highly organized and expensive forms of communication and transportation between these centers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cooper, D.K.C. (1976). The donor heart; the present position with regard to resuscitation, storage and assessment of viability. J. Surg. Res., 21, 363

    Article  PubMed  CAS  Google Scholar 

  2. Lehninger, A.L. (1975). Catabolism and generation of the phosphate bond energy. In Biochemistry: The Molecular Basis of Cell Structure and Function, 2nd ed., p. 361. (New York: Worth)

    Google Scholar 

  3. Pegg, D.E. (1981). The biology of cell survival in vitro. In Karow, A.M. and Pegg, D.E.(eds.)Organ Preservation for Transplantation, 2nd ed., p. 31. (New York and Basel: Dekker)

    Google Scholar 

  4. Leading article (1973). Reporting the proceedings of the first international symposium on organ preservation. Cambridge. Lancet, 2, 715

    Google Scholar 

  5. Kirsh, M.M., Behrendt, D.M. and Jockim, K.E. (1979). Effects of methylprednisolone in cardioplegie solution during coronary bypass grafting. J. Thorac. Cardiovasc. Surg., 77, 896

    PubMed  CAS  Google Scholar 

  6. Fox, A.C., Hoffstein, S. and Weissmann, G. (1976). Lysosomal mechanisms in production of tissue damage during myocardial ischemia and the effects of treatment with steroids. Am. Heart J., 91, 394

    Article  CAS  Google Scholar 

  7. Novitzky, D., Cooper, D.K.C., Wicomb, W.N. and Reichart, B. (1986). Improved function of stored hearts following hormonal therapy after brain death in pigs. Transplant Proc., 18, 1419

    CAS  Google Scholar 

  8. Wicomb, W.N, Cooper, D.K.C, and Novitzky, D. (1986). Impairment of renal slice function following brain death, with reversibility of injury by hormonal therapy. Transplantation, 41, 29

    Article  PubMed  CAS  Google Scholar 

  9. Cooper, D.K.C. (1976). Resuscitation of the cadaver donor heart in the dog. III. The influence of the agonal period on the success of resuscitation. Guy’s Hosp. Rep., 123, 363

    Google Scholar 

  10. Wicomb, W.N, Cooper, D.K.C, Novitzky, D. and Barnard, C.N. (1984). Cardiac transplantation following storage of the donor heart by a portable hypothermic perfusion system. Ann. Thorac. Surg., 37, 243

    Article  PubMed  CAS  Google Scholar 

  11. Bogardus, G.M. and Schlosser, R.J. (1956). The influence of temperature upon ischemic renal damage. Surgery, 39, 970

    PubMed  CAS  Google Scholar 

  12. Gott, V.L, Bartlett, M, Johnson, J.A, Long, D.M. and Lillehei, C.W. (1960). High energy phosphate levels in the human heart during potassium citrate arrest and selective hypothermic arrest. Surg. Forum, 10, 544

    PubMed  CAS  Google Scholar 

  13. Greenberg, J.J, Edmunds, L.H. and Brown, R.B. (1960). Myocardial metabolism and post-arrest function in the cold and chemically arrested heart. Surgery, 48, 31

    PubMed  CAS  Google Scholar 

  14. Webb, W.R. and Howard, H.S. (1957). Cardiopulmonary transplantation. Surg. Forum, 8, 313

    PubMed  CAS  Google Scholar 

  15. Lower, R.R, Stofer, R.C, Hurley, E.J, Dong, E.Jr, Cohn, R.B. and Shumway, N.E. (1962). Successful homotransplantation of the canine heart after anoxic preservation for seven hours. Am. J. Surg., 104, 302

    Article  PubMed  CAS  Google Scholar 

  16. Bigelow, W.G, Mustard, W.T. and Evans, J.G. (1954). Some physiological concepts of hypothermia and their application to cardiac surgery. J. Thorac. Surg., 28, 480

    Google Scholar 

  17. Gevers, W. (1977). Generation of protons by metabolic processes in heart cells. J. Mol. Cell Cardiol., 9, 867

    Article  PubMed  CAS  Google Scholar 

  18. Hand, S.C. and Somero, G.N. (1982). Urea and methylamine effects on rabbit muscle phosphofructokinase. J. Biol. Chem., 257, 734

    PubMed  CAS  Google Scholar 

  19. Parr, D.R, Wimshurst, J.M. and Harris, E.J. (1975). Calcium-induced damage of rat heart mitochondria. Cardiovasc. Res., 9, 366

    Article  PubMed  CAS  Google Scholar 

  20. Ganote, C.E, Worstell, J. and Kaltenbach, J.P. (1976). Oxygen-induced enzyme release irreversible myocardial injury; effects of cyanide in perfused rat hearts. Am. J. Pathol., 84, 327

    PubMed  CAS  Google Scholar 

  21. Jennings, R.B. and Ganote, C.E. (1976). Mitochondrial structure and function in acute myocardial ischemic injury. Circ. Res., 38, (Suppl. 1), 80

    Google Scholar 

  22. Melrose, R.G, Dreyer, B, Bentall, H.H. and Baker, J.B.E. (1955). Elective cardiac arrest. Lancet, 2, 21

    Article  Google Scholar 

  23. Hearse, D.J, Stewart, D.A. and Chain, E.B. (1974). Recovery from cardiac bypass and elective cardiac arrest. The metabolic consequences of various cardioplegie procedures in the isolated rat heart. Circ. Res., 35, 448

    PubMed  CAS  Google Scholar 

  24. Nakae, S, Webb, W.R, Salyer, K.E, Unal, M.O, Cook, W.A, Dodds, R.P. and Williams, C.T. (1957). Extended survival of the normothermic anoxic heart with metabolic inhibitors. Ann. Thorac. Surg., 3, 37

    Article  Google Scholar 

  25. Hearse, D.J, Stewart, D.A. and Braimbridge, M.V. (1976). Cellular protection during myocardial ischemia. Circulation, 54, 193

    PubMed  CAS  Google Scholar 

  26. Kamiyama, T.M, Webb, W.R. and Baker, R.R. (1970). Preservation of the anoxic heart with a metabolic inhibitor and hypothermia. Arch. Surg., 100, 596

    PubMed  CAS  Google Scholar 

  27. Reitz, B.A, Brody, W.R, Hickey, P.R. and Michaelis, L.L. (1974). Protection of the heart for 24 hours with intracellular (high K +) solution and hypothermia. Surg. Forum, 25, 149

    PubMed  CAS  Google Scholar 

  28. Wicomb, W.N. and Cooper, D.K.C. (1984). Donor heart storage. In Cooper, D.K.C. and Lanza, R.P. (eds.) Heart Transplantation, p. 51, (Lancaster: MTP Press)

    Google Scholar 

  29. Barnard, M.S., Van Heerden, J, Hope, A, O’Donovan, T.G. and Barnard, C.N. (1969). Total body perfusion for cardiac transplantation. S. Afr. Med. J., 43, 64

    PubMed  CAS  Google Scholar 

  30. Demikhov, V.P. (1962). Experimental Transplantation of Vital Organs. Authorized translantion from the Russian by Haigh, B. (New York: Consultants Bureau)

    Google Scholar 

  31. Robicsek, F, Stam, R.E, Rees, T.T, Taylor, F.H. and Sanger, P.W. (1959). Transplantation of the heart. 2. Haemodynamic observations of the isolated heart. Heineman Laboratories Collected Works on Cardiopulmonary Disease, 1–2, 96

    Google Scholar 

  32. Yamada, T, Bosher, L.R.Jr. and Richardson, G.M. (1965). Observations on the autoperfusing heart—lung preparation. Trans. Am. Soc. Artif. Intern. Organs, 11, 192

    PubMed  CAS  Google Scholar 

  33. Robicsek, F, Lesage, A, Sanger, P.W, Daugherty, H.K, Moore, M. and Bagby, E. (1968). The maintenance of function of the donor heart in the extracorporeal stage and during transplantation. Ann. Thorac. Surg., 6, 331

    Article  Google Scholar 

  34. Cooper, D.K.C. (1975). Hemodynamic studies during short-term preservation of the autoperfusing heart—lung preparation. Cardiovasc. Res., 9, 753

    Article  PubMed  CAS  Google Scholar 

  35. Dupree, E.L., Mills, M, Clark, R. and Sell, K.W. (1969). Xenogeneic storage of primate hearts. Transplant. Proc., 1, 840

    PubMed  Google Scholar 

  36. Solis, E, Tyce, G.M, Bianco, R, Mahoney, J. and Kaye, M.P. (1986). High energy phosphates and catecholamine stores after prolonged ex vivo heart preservation. J. Heart Transplant., 5, 444

    PubMed  CAS  Google Scholar 

  37. Proctor, E. and Parker, R. (1968). Preservation of isolated heart for 72 hours. Br. Med. J., 4, 296

    Article  PubMed  CAS  Google Scholar 

  38. Copeland, J.G, Jones, M, Spragg, R. and Stinson, E.B. (1973). In vitro preservation of canine heart for 24 to 48 hours followed by successful orthotopic transplantation. Ann. Surg., 178, 687

    Article  PubMed  CAS  Google Scholar 

  39. Kioka, Y, Tago, M, Bands, K, Seno, S, Shinozaki, Y, Murakami, T, Nawa, S, Senoo, Y. and Teramoto, S. (1986). Twenty-four hours isolated heart preservation by perfusion method with oxygenated solution containing perfluorochemicals and albumin. J. Heart Transplant., 5, 437

    PubMed  CAS  Google Scholar 

  40. Cooper, D.K.C, Wicomb, W.N. and Barnard, C.N. (1983). Storage of the donor heart by a portable hypothermic perfusion system: experimental development and clinical experience. J. Heart Transplant., 2, 104

    Google Scholar 

  41. Cooper, D.K.C, Wicomb, W.N, Rose, A.G. and Barnard, C.N. (1983). Orthotopic allotransplantation and autotransplantation of the baboon heart following twenty-four hours storage by a portable hypothermic perfusion system. Cryobiology, 20, 385

    Article  PubMed  CAS  Google Scholar 

  42. Wicomb, W.N, Novitzky, D, Cooper, D.K.C. and Rose, A.G, (1986). Forty-eight hours hypothermic perfusion storage of pig and baboon hearts. J. Surg. Res., 40, 276

    Article  PubMed  CAS  Google Scholar 

  43. Wicomb, W.N, Rose, A.G, Cooper, D.K.C. and Novitzky, D. (1986). Hemodynamic and myocardial histological and ultrastructural studies in baboons three to twenty-seven months following autotransplantation of hearts stored by hypothermic perfusion for 24 or 48 hours. J. Heart Transplant., 5, 122

    PubMed  CAS  Google Scholar 

  44. Wicomb, W.N, Cooper, D.K.C, Lanza, R.P, Novitzky, D. and Isaacs, S. (1986). The effects of brain death and 24 hours storage by hypothermic perfusion on donor heart function in the pig. J. Thorac. Cardiovasc. Surg., 91, 896

    PubMed  CAS  Google Scholar 

  45. Martin, C.D., Scott, D.F., Downes, G. and Belzer, F.O. (1972). Primary cause of unsuccessful liver and heart preservation; cold sensitivity of the ATPase system. Ann. Surg., 175, 111

    Article  PubMed  CAS  Google Scholar 

  46. Lyons, J.M. and Raison, J.K. (1970). A temperature-induced transition in mitochondrial oxidation; contrasts between cold- and warmblooded animals. Comp. Biochem. Physiol., 37, 405

    Article  CAS  Google Scholar 

  47. Kemp, A., Groot, G.S.P. and Reemtsma, H.J. (1969). Oxidative phosphorylation as a function of temperature. Biochem. Biophys. Acta, 180, 28

    Article  PubMed  CAS  Google Scholar 

  48. Zimmerman, A.N.E., Daems, W., Huismann, W.C., Snijder, J., Wisse, E. and Durrer, D. (1967). Morphological changes of heart muscle caused by successive perfusing with Ca+ +-free and Ca+ +-containing solutions (Calcium paradox). Cardiovasc. Res., 1, 201

    Article  CAS  Google Scholar 

  49. Alto, L.E. and Dhalla, N.S. (1981). Role of changes in microsomal calcium uptake on the effects of reperfusion of Ca+ +-deprived rat hearts. Circ. Res., 48, 17

    PubMed  CAS  Google Scholar 

  50. Katz, A.M. and Tada, M. (1972). The ’stone heart’; a challenge to the biochemist. Am. J. Cardiol., 29, 578

    Article  PubMed  CAS  Google Scholar 

  51. Wicomb, W.N. and Collins, G.M. (1989). Twenty-four hour rabbit heart storage with UW solution: effects of low flow perfusion, colloid, and shelf storage. Transplantation, 48, 6

    Article  PubMed  CAS  Google Scholar 

  52. Toledo-Pereyra, L.H. (1987). Definition of reperfusion injury in transplantation. Transplantation, 43, 931

    PubMed  CAS  Google Scholar 

  53. Naylor, W.G., Poole-Wilson, P.A. and William, A. (1979). Hypoxia and calcium. J. Mol. Cell Cardiol., 11, 683

    Article  Google Scholar 

  54. Jennings, R.B. and Ganote, C.E. (1976). Mitochondrial structure and function in acute myocardial ischemic injury. Circ. Res., 38, (Suppl. I), 80

    Google Scholar 

  55. Opie, J.C., Taylor, G., Ashmore, P.G. and Kalousek, D. (1981). “Stone heart” in the neonate. J. Thorac. Cardiovasc. Surg., 81, 459

    PubMed  CAS  Google Scholar 

  56. McCord, J.M. (1985). Oxygen derived free radicals in post-ischemic tissue injury. N. Engl. J. Med., 312, 159

    Article  PubMed  CAS  Google Scholar 

  57. Ytrehus, K., Myklebust, R. and Mjos, O.D. (1986). Influence of oxygen radicals generated by xanthine oxidase in the isolated perfused rat heart. Cardiovasc. Surg., 20, 597

    CAS  Google Scholar 

  58. Hess, M.L., Warner, M.R., Roblins, A.D., Crute, S. and Greenfield, L.J. (1981). Characterization of the excitation-contraction coupling system of the hypothermic myocardium following ischemia and reperfusion. Cardiovasc. Res., 15, 380

    Article  Google Scholar 

  59. Jennings, R.B., Ganote, C.E. and Reimer, K.A. (1975). Ischemic tissue injury. Am. J. Pathol., 81, 197

    Google Scholar 

  60. Trump, B.F. and Berezesky, I.K. (1983). The role of Ca+ + deregulation in cell injury and cell death. Surv. Synth. Path. Res., 2, 165

    Google Scholar 

  61. Naylor, W.G. (1983). Calcium and cell death. Eur. Heart. J., 4, (Suppl.), 33

    Google Scholar 

  62. Shen, A.C. and Jennings, R.B. (1972). Myocardial calcium and magnesium in acute ischemic injury. Am. J. Pathol., 67, 417

    PubMed  CAS  Google Scholar 

  63. Beatrice, M.C., Stiers, D.L. and Pfeiffer, D.R. (1984). The role of glutathione in the retention of Ca++ by liver mitochondria. J. Biol. Chem., 259, 1279

    PubMed  CAS  Google Scholar 

  64. Rodemann, H.P., Waxman, L. and Goldberg, A.L. (1982). The stimulation of protein degradation in muscle by Ca+ is mediated by PGE2 and does not require the calcium activated protease. J. Biol. Chem., 257, 8716

    PubMed  CAS  Google Scholar 

  65. Etlinder, J.D., Kameyama, T., Toner, K., Van der Westhuyzen, D. and Matsumoto, K. (1980). In Pette, D. (ed.) Plasticity of Muscle., p. 541. (New York: Walter de Gruyter)

    Google Scholar 

  66. Goldberg, A.L. and St. John, A.C. (1974). Intracellular protein degradation in mammalian and bacterial cells. Ann. Rev. Biochem., 45, 747

    Article  Google Scholar 

  67. Lee, S. L. and Dhalla, N.S. (1976). Subcellular calcium transport in failing hearts due to calcium deficiency and overload. Am. J. Physiol., 231, 1159

    PubMed  CAS  Google Scholar 

  68. Moorhouse, P.C., Grootveld, M., Halliwell, B., Quinlan, J.E. and Gutteridge, J.M.C. (1987). Allopurinol and oxypurinol are hydroxyl radical scavengers. FEBS. Lett., 213, 23

    Article  PubMed  CAS  Google Scholar 

  69. Bergsland, J., Lobalsamo, L., Lajos, P., Feldman, M.J. and Mookerjee, B. (1987). Allopurinol in prevention of perfusion injury of hypoxically stored rat hearts. J. Heart Transplant., 6, 137

    PubMed  CAS  Google Scholar 

  70. Myers, C.L., Weiss, SJ., Kirsch, M.M., Shephard, B.M. and Shlafer, M. (1986). Effects of supplementing hypothermic crystalloid cardioplegic solution with catalase superoxide dismutase, allopurinol, or deferoxamine on functional recovery of globally ischemic and reperfused isolated hearts. J. Thorac. Cardiovasc. Surg., 91, 281

    PubMed  CAS  Google Scholar 

  71. Christoffersen, G.R.J, and Skibsted, L.H. (1975). Calcium ion activity in physiological salt solutions: influences of anions substituted for chloride. Comp. Biochem. Physiol., 52A, 317

    Article  Google Scholar 

  72. Kopf, G.S., Chaudry, I., Condos, S. and Baue, A.E. (1987). Reperfusion with ATP-MgCl2 following prolonged ischemia improves myocardial performance. J. Surg. Res., 43, 114

    Article  PubMed  CAS  Google Scholar 

  73. Kajiyama, K., Pauly, D.F., Hughes, H., Yoon, S.B., Entman, M.L. and McMillan-Wood, J.B. (1987). Protection by verapamil of mitochondrial glutathione equilibrium and phospholipid changes during reperfusion of ischemic canine myocardium. Circ. Res., 61, 301

    PubMed  CAS  Google Scholar 

  74. Chien, K.R., Abrams, J., Pfau, R.G. and Farber, J.L. (1977). Prevention by chlorpromazine of ischemic liver cell death. Am. J. Pathol., 88, 539

    PubMed  CAS  Google Scholar 

  75. Pryor, W.A. (1976). The role of free radical reactions in biological systems. In Pryor, W.A. (ed.) Free Radicals in Biology, p. 1. (New York: Academic Press)

    Google Scholar 

  76. Fridovich, I. (1978). The biology of oxygen radicals. Science, 201, 875

    Article  PubMed  CAS  Google Scholar 

  77. Fridovich, I. (1970). Quantitative aspects of the production of superoxide anion radical by milk xanthine oxidase. J. Biol. Chem., 245, 4053

    PubMed  CAS  Google Scholar 

  78. Fee, J.A. and Valentine, J.S. (1977). Chemical and physical properties of superoxide. In Michelson, A.M., McCord, J.M. and Fridovich, I. (eds.) Superoxide and Superoxide Dismutase. p. 19. (New York: Academic Press)

    Google Scholar 

  79. Nilsson, R., Pick, F.M. and Bray, R.C. (1969). EPR studies on reduction of oxygen to superoxide by some biochemical systems. Biochem. Biophys. Acta, 192, 145

    PubMed  CAS  Google Scholar 

  80. Estabrook, R.A. and Werringloer, J. (1977). Cytochrome P450: its role in oxygen activation for drug metabolism. In Gould, R.F. (ed.) Drug Metabolism Concepts, p.l. (Washington, DC: American Chemical Society)

    Google Scholar 

  81. Masters, C. and Holmes, R. (1977). Peroxisomes: new aspects of cell physiology and biochemistry. Physiol. Rev., 57, 816

    PubMed  CAS  Google Scholar 

  82. Samuelson, B. (1983). Leukotrines: mediators of immediate hypersensitivity reactions and inflammation. Science, 220, 568

    Article  Google Scholar 

  83. Klebanoff, S.J. (1980). Oxygen metabolism and the toxic properties of phagocytes. Ann. Intern. Med., 93, 480

    PubMed  CAS  Google Scholar 

  84. Mead, J.F. (1976). Free radical mechanisms of lipid damage and consequences of cellular membranes. In Pryor, W.A. (ed.) Free Radicals in Biology. Vol. I, p. 51. (New York: Academic Press)

    Google Scholar 

  85. Maridonneau, I., Braquet, P. and Garay, R.P. (1983). Na+ and K + transport damage induced by oxygen free radicals in human red cell membranes. J. Biol. Chem., 258, 3107

    PubMed  CAS  Google Scholar 

  86. Moody, C.S. and Hasson, H.M. (1982). Mutagenicity of oxygen free radicals. Proc. Natl. Acad. Sci. USA, 79, 2855

    Article  PubMed  CAS  Google Scholar 

  87. Fligiel, S.E.G., Lee, E.C. and McCoy, J.P. (1984). Protein degradation following treatment with hydrogen peroxide. Am. J. Pathol., 115, 418

    PubMed  CAS  Google Scholar 

  88. Perez, H.D., Wedsler, B.B. and Goldstein, I.M. (1980). Generation of a chemotactic lipid from arachidonic acid by exposure to a superoxide generating system. Inflammation, 4, 313

    Article  PubMed  CAS  Google Scholar 

  89. Oguma, F., Imai, S. and Eguchi, S. (1986). Role played by oxygen in myocardial protection with crystalloid cardioplegic solution. Ann. Thor. Surg., 42, 172

    Article  CAS  Google Scholar 

  90. Coetzee, A., Kotze, J., Law, J. and Lochner, A. (1986). Effect of oxygenated crystalloid cardioplegia on the functional and metabolic recovery of the isolated perfused rat heart. J. Thorac. Cardiovasc. Surg., 91, 259

    PubMed  CAS  Google Scholar 

  91. Rousou, J.A, Engelman, R.M, Anisimowicz, L, Lemeshow, S, Dobbo, W.A, Breyer, R.H. and Das, D.K. (1986). Metabolic enhancement of myocardial preservation during cardioplegic arrest. J. Thorac. Cardiovasc. Surg., 91, 270

    PubMed  CAS  Google Scholar 

  92. Otani, H, Engelman, R.M., Rousou, J.A., Breyer, R.H., Lemeshow, S. and Das, D.K. (1986). Cardiac performance during reperfusion improved by pretreatment with oxygen free radical scavengers. J. Thorac. Cardiovasc. Surg., 91, 290.

    PubMed  CAS  Google Scholar 

  93. Prodjian, A.K, Levitsky, S, Krukenkamp, I, Silverman, N.A. and Feinberg, H. (1987). Developmental changes in reperfusion injury. J. Thorac. Cardiovasc. Surg., 93, 428

    Google Scholar 

  94. Mak, I.T., Misra, H.P. and Weglicki, W.B. (1983). Temporal relationship of free radical-induced lipid peroxidation and loss of latent enzyme activity in highly enriched hepatic lysosomes. J. Biol. Chem., 258, 13733

    PubMed  CAS  Google Scholar 

  95. Kramer, J.H, Mak, I.T. and Weglicki, W. B. (1984). Differential sensitivity of canine cardiac sarcolemmal and microsomal enzymes to inhibition by free radical-induced lipid peroxidation. Circ. Res., 55, 120

    PubMed  CAS  Google Scholar 

  96. Lucy, J.A. (1972). Functional and structural aspects of biological membranes: a suggested structural role of vit. E in the control for membrane permeability and stability. Ann. NY Acad. Sci., 203, 4

    Article  PubMed  CAS  Google Scholar 

  97. Packer, J.E, Slater, T.F. and Willson, R.L. (1979). Direct observation of a free radical interaction between vit. E and vit. C. Nature (London), 278, 737

    Article  CAS  Google Scholar 

  98. Frank, L. and Massaro, D. (1980). Oxygen toxicity. Am. J. Med., 69, 117

    Article  PubMed  CAS  Google Scholar 

  99. Halliwell, B. (1982). Superoxide and superoxide-dependent formation of hydroxyl radicals are important in oxygen toxicity. Trends. Biochem. Sci., Aug, 271

    Google Scholar 

  100. Laurence, R.A. and Burk, R.F. (1978). Species tissue and subcellular distribution of non-selenium dependent glutathione peroxidase activity. J. Nutr., 108, 211

    Google Scholar 

  101. Al-Timini, D.J. and Dormandy, T.L. (1977). The inhibition of lipid autoxidation by human ceruloplasmin. Biochem. J., 168, 283

    Google Scholar 

  102. Miller, J.S. and Cornwell, D.G. (1978). The role of cryoprotective agents as hydroxyl radical scavengers. Cryobiology, 15, 585

    Article  PubMed  CAS  Google Scholar 

  103. Collins, G.M., Wicomb, W.N. and Halasz, N.A. (1984). Beneficial effect of low concentrations of cryoprotective agents on short-term rabbit kidney perfusion. Cryobiology, 21, 246

    Article  PubMed  CAS  Google Scholar 

  104. Menasche, P, Grousset, C, Gauduel, Y. and Piwnica, A. (1986). A comparative study of free radical scavengers in cardioplegic solutions. J. Thorac. Cardiovasc. Surg., 92, 264

    PubMed  CAS  Google Scholar 

  105. McCord, J. and Fridovich, I. (1980). Superoxide dismutase: threat and defense. Acta Physiol. Scand. (Suppl.), 492, 9

    Google Scholar 

  106. Belzer, F.O. and Southard, J. (1988). Principles of solid-organ preservation by cold storage. Transplantation, 45, 673

    Article  PubMed  CAS  Google Scholar 

  107. Houpert, Y. (1976). Comparison of procedures for extracting free amino acids from polymorphonuclear leukocytes. Clin. Chem., 22, 1618

    PubMed  CAS  Google Scholar 

  108. Jellinek, M, Castañeda, M, Garvin, P.J, Nichoff, M. and Codd, J.E. (1985). Oxidation-reduction maintenance in organ preservation. Arch. Surg., 120, 439

    PubMed  CAS  Google Scholar 

  109. Wicomb, W.N, Hill, J.D, Avery, J. and Collins, G.M. (1989). Comparison of cardioplegic and UW solutions for short-term rabbit heart preservation. Transplantation, 47, 733

    Article  PubMed  CAS  Google Scholar 

  110. Cankovic-Darracott, S, Braimbridge, M.V, Williams, B.T, Bitensky, L. and Chayen, J. (1977). Myocardial preservation during aortic valve surgery. J. Thorac. Cardiovasc. Surg., 73, 699

    PubMed  CAS  Google Scholar 

  111. Braimbridge, M.V, Chayen, J, Bitensky, L, Hearse, D.J, Jynge, P. and Canković-Darracott, S. (1977). Cold cardioplegia or continuous coronary perfusion? J. Thorac. Cardiovasc. Surg., 74, 900

    PubMed  CAS  Google Scholar 

  112. Canković-Darracott, S. (1982). In Engelman, R.M. and Levitsky, D. (eds.)A Handbook of Clinical Cardioplegia, p. 43. (New York: Futura)

    Google Scholar 

  113. Bull, C, Cooper, J. and Stark, J. (1984). Cardioplegic protection of the child’s heart. J. Thorac. Cardiovasc. Surg., 88, 287

    PubMed  CAS  Google Scholar 

  114. Chayen, J, Bitensky, L. and Canković-Darracott, S. (1985). Increased myosin orientation during muscle contraction: a measure of cardiac contractility. Cell Biochem. Fund., 3, 101

    Article  CAS  Google Scholar 

  115. Canković-Darracott, S, Hutter, J, Wallwork, J, Wheeldon, D. and English, T.A.H. (1988). Biopsy assessment of myocardial preservation in 160 human donor hearts. Transplant. Proc., 20 (5 Suppl. 17), 44

    Google Scholar 

  116. Pitzele, S, Sze, S. and Dobell, A.R.C. (1971). Functional evaluation of the heart after storage under hypothermic coronary perfusion. Surgery, 70, 569.

    PubMed  CAS  Google Scholar 

  117. Levitsky, S, Williams, W.H, Hetmer, D.E, Mcintosh, C.L. and Morrow, A.G. (1970). A functional evaluation of the preserved heart. J. Thorac. Cardiovasc. Surg., 60, 625

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Wicomb, W.N., Cooper, D.K.C. (1990). Storage of the Donor Heart. In: Cooper, D.K.C., Novitzky, D. (eds) The Transplantation and Replacement of Thoracic Organs. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0711-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0711-9_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6805-5

  • Online ISBN: 978-94-009-0711-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics