Skip to main content

Burg Algorithm Applied to Fourier Transform ION Cyclotron Resonance Mass Spectrometry

  • Chapter
  • 643 Accesses

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 39))

Abstract

The method known as Burg’s maximum entropy algorithm has been applied to the time domain signals measured and recorded in a mass spectrometer known as Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. Ordinarily several thousands of data points are obtained and analyzed by application of a fast Fourier transform algorithm to obtain the frequency domain spectra which are then converted to mass spectra. In this paper we describe some results that we have obtained by adapting Burg’s algorithm to our FTICR, and will show that by employimg ahandful of data points, mass spectra can be gotten that are superior to those obtained by the FFT techniques.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Comisarow, M.B. and Marshall, A.G., Chem. Phys. Letters,25(1974)282.

    Article  Google Scholar 

  2. Ghaderi, S. Kulkarni, P.S. Ledford, E.B. Wilkins, C.L. and Gross, M.L., Anal. Chem. 53 (1981) 428.

    Article  Google Scholar 

  3. Gross, M.L. and Rempel, D.L., Science, 226 (1984) 261.

    Article  Google Scholar 

  4. White, R. L. and Wilkins, C. L., Anal. Chem., 54 (1982) 2443.

    Article  Google Scholar 

  5. Bricker, D. L., Adams, T.A. and Russel, D.H., Anal. Chem., 55 (1983) 2417.

    Article  Google Scholar 

  6. Cody, R. B., Burnier, R. C., Cassidy, C.L. and Freiser, B.S., Anal. Chem. 54 (1982) 2225.

    Article  Google Scholar 

  7. Chen, Ling and Marshall, A.G., Int. J. Mass Spectrom. Ion Processes, 79 (1987) 115.

    Article  Google Scholar 

  8. Burg, J.P.,in “Modern spectral analysis”, IEEE Press, NY, P.42.

    Google Scholar 

  9. Ulrych, T.J. and Bishop, T.N., Rev. Geophys. Space Phys. 13 (1975) 183

    Article  Google Scholar 

  10. Rahbee, A., Chem. Phys. Letters, 117 (1985) 352.

    Article  Google Scholar 

  11. Rahbee, A., Int. J. Mass Spectrom. Ion Processes, 72 (1985) 3.

    Article  Google Scholar 

  12. Fougere, P.F., J. Geophys. Res., 90 (1985) 4355.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Rahbee, A. (1990). Burg Algorithm Applied to Fourier Transform ION Cyclotron Resonance Mass Spectrometry. In: Fougère, P.F. (eds) Maximum Entropy and Bayesian Methods. Fundamental Theories of Physics, vol 39. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0683-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0683-9_26

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6792-8

  • Online ISBN: 978-94-009-0683-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics