Skip to main content

Maximum Entropy Description of Plasma Equilibrium

  • Chapter
Maximum Entropy and Bayesian Methods

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 39))

Abstract

The self-consistent equation for the potential φ in an equilibrium plasma is found by combining Poisson’s equation ε02 φ= −ρ with the Maximum Entropy formula relating the charge density ρ to the potential. On ignoring interparticle correlations this takes the form of the Boltzmann distribution, ρ α exp(−β q φ). The resulting ‘Poisson-Boltzmann’ equation for the potential is studied in various geometries with differing combinations of charge species. It is nonlinear, inducing a surprising result: a fixed line charge immersed in plasma may attract a non-zero amount of charge of opposite polarity arbitrarily close to it; neutralisation of fixed point charges is exact; and a fixed point dipole causes the entire plasma to condense onto it! Failure of these results in practice is due to particle correlations and the non-zero size of real multipoles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Garrett, A.J.M. ‘Maximum Entropy with Nonlinear Constraints’; these Proceedings.

    Google Scholar 

  2. Garrett, A.J.M. & Poladian, L. (1988) ‘Refined Derivation, Exact Solutions and Singular Limits of the Poisson-Boltzmann Equation’, Ann. Phys. 188, 386–435.

    Article  MathSciNet  MATH  Google Scholar 

  3. MacGillivray, A.D. (1972) ‘Lower Bounds on Solutions of the Poisson-Boltzmann Equation near the Limit of Infinite Dilution’, J. Chem. Phys. 57, 4071–4075.

    Article  Google Scholar 

  4. Friedman, A. & Tintarev, K. (1987) ‘Boundary Asymptotics for Solutions of the Poisson-Boltzmann Equation’, J. Differential Eqns. 69, 15–38.

    Article  MathSciNet  MATH  Google Scholar 

  5. Tintarev, K. (1987) ‘Fundamental Solution of the Poisson-Boltzmann Equation’, in: I.W. Knowles & Y. Saito (eds), J. Differential Equations and Mathematical Physics (Proceedings, Birmingham, Alabama, 1986), Lecture Notes in Mathematics 1285, Springer, Berlin, pp. 480–485.

    Chapter  Google Scholar 

  6. Berestycki, H. & Lions, P.-L. (1983) ‘Nonlinear Scalar Field Equations, I: Existence of a Ground State, and II: Existence of Infinitely Many Solutions’, Arch. Rat. Mech. Anal. 82, 313–346 and 347–375.

    MathSciNet  MATH  Google Scholar 

  7. Atkinson, F.V. & Peletier, L.A. (1986) ‘Ground States of −Δu = f(u) and the Emden-Fowler Equation’, Arch. Rat. Mech. Anal. 93, 103–127.

    Article  MathSciNet  MATH  Google Scholar 

  8. Debye, P. & Hückel, E. (1923) ‘Zur Theorie der Elektrolyte, I: Gefrierpunktserniedrigung und verwandte Erscheinungen’, Physik. Zeits. 24, 185–206.

    Google Scholar 

  9. Ninham, B.W. & Parsegian, V.A. (1971) ‘Electrostatic Potential between Surfaces Bearing Ionisable Groups in Ionic Equilibrium with Physiologic Saline Solution’, J. Theoret. Biol. 31, 405–428.

    Article  Google Scholar 

  10. Fuoss, R.M., Katchalsky, A. & Lifson, S. (1951) ‘The Potential of an Infinite Rod-Like Molecule and the Distribution of the Counter-Ions’, Proc. Nat. Acad. Sci. USA: Chemistry 37, 579–589.

    Article  MATH  Google Scholar 

  11. Alfey, T., Berg, P.W. & Morawetz, H. (1951) ‘The Counterion Distribution in Solutions of Rod-Shaped Polyelectrolytes’, J. Polymer Sei. 7, 543–547.

    Article  Google Scholar 

  12. Rubinstein, I. (1986) ‘Counterion Condensation as an Exact Limiting Property of Solutions of the Poisson-Boltzmann Equation’, SIAM J.-Appl. Math. 46, 1024–1038.

    Article  MathSciNet  MATH  Google Scholar 

  13. McCaskill, J.S. & Fackerell, E.D. (1988) ‘Painlevé Solution of the Poisson-Boltzmann Equation for a Cylindrical Polyelectrolyte in Excess Salt Solution’, J. Chem. Soc. Faraday Trans. 2, 84, 161–179.

    Article  Google Scholar 

  14. Ince, E.L. (1956) Ordinary Differential Equations, Dover, New York. Reprint of the original 1926 edition.

    Google Scholar 

  15. Davis, H.T. (1962) Introduction to Nonlinear Differential and Integral Equations, Dover, New York.

    MATH  Google Scholar 

  16. MacGillivray, A.D. & Winkleman, J.J. (1966) ‘On an Asymptotic Solution of the Poisson-Boltzmann Equation — The Moderately Charged Cylinder’, J. Chem. Phys. 45, 2184–2188.

    Article  Google Scholar 

  17. Lampert, M.A. & Martinelli, R.U. (1985) ‘Buffering of Charge in Non-Linear Poisson-Boltzmann Theory’, Chem. Phys. Lett. 121, 121–123.

    Article  Google Scholar 

  18. Alexandrowicz, I. & Katchalsky, A. (1963) ‘Colligative Properties of Polyelectrolyte Solutions in Excess of Salt’, J. Polymer Sci. A 1, 3231–3260.

    Google Scholar 

  19. MacGillivray, A.D. (1972) ‘Upper Bounds on Solutions of the Poisson-Boltzmann Equation near the Limit of Infinite Dilution’, J. Chem. Phys. 56, 80–83.

    Article  Google Scholar 

  20. MacGillivray, A.D. (1972) ‘Bounds on Solutions of the Poisson-Boltzmann Equation near Infinite Dilution — The Moderately Charged Case’, J. Chem. Phys. 57, 4075–4078.

    Article  Google Scholar 

  21. Lampert, M.A. & Crandall, R.S. (1980) ‘Non-Linear Poisson-Boltzmann Theory for Polyelectrolyte Solutions: The Counterion Condensate Around a Line Charge as a δ- Function’, Chem. Phys. Lett. 72, 481–486.

    Article  Google Scholar 

  22. Liouville, J. (1853) ‘Sur l’equation aux differences partielles d2logλ/dudv ± λ/2a 2 = 0’, J. Math. Pures. Appl. 18, 71–72.

    Google Scholar 

  23. Drazin, P.G. (1984) Solitons„ first corrected edition, Cambridge University Press, Cambridge, UK. Section 7.2.

    Google Scholar 

  24. Ting, A.C., Chen, H.H. & Lee, Y.C. (1987) ‘Exact Solutions of a Nonlinear Boundary Value Problem: the Vortices of the Two-Dimensional Sinh-Poisson Equation’, Physica D. 26, 37–66.

    Article  MathSciNet  MATH  Google Scholar 

  25. Weiss, J., Tabor, M. & Carnevale, G. (1983) ‘The Painlevé property for partial differential equations’, J. Math, Phys. 24, 522–526.

    Article  MathSciNet  MATH  Google Scholar 

  26. Stoyanov, D.T. (1986) ‘On the Classical Solutions of the Liouville Equation in a Four-Dimensional Euclidean Space’, Lett. Math. Phys. 12, 93–96.

    Article  MathSciNet  MATH  Google Scholar 

  27. reference [15], Chapter 12, section 7.

    Google Scholar 

  28. reference [15], Chapter 3, section 8.

    Google Scholar 

  29. Lampert, M.A. & Martinelli, R.U. (1984) ‘Solution of the Non-Linear Poisson-Boltzmann Equation in the Interior of Charged, Spherical and Cylindrical Vesicles. I: The High Charge Limit’, Chem. Phys. 88, 399–413.

    Article  Google Scholar 

  30. Lampert, M.A. & Crandall, R.S. (1979) ‘Spherical, Non-Linear Poisson-Boltzmann Theory and its Debye-Hückel Linearization’, Chem. Phys. Lett. 68, 473–476.

    Article  Google Scholar 

  31. Martinov, N., Ouroushev, D. & Chelebiev, E. (1986) ‘New types of polarization following from the non-linear spherical radial Poisson-Boltzmann Theory Equation, J. Phys. A 19, 1327–1332.

    Article  MathSciNet  MATH  Google Scholar 

  32. Lampert, M.A. & Crandall, R.S. (1980) ‘Fate of the Coulomb singularity in nonlinear Poisson-Boltzmann theory: The point charge as an electrically invisible object’, Phys. Rev. A 21, 362–366.

    Article  Google Scholar 

  33. Garrett, A.J.M. (1988) ‘Screening of point charges in two and three dimensions’, Phys. Rev. A 37, 4354–4357.

    Article  Google Scholar 

  34. Onsager, L. (1988) ‘Theories of Concentrated Electrolytes’, Chem. Rev. 13, 73–89.

    Article  Google Scholar 

  35. Fixman, M. (1979) ‘The Poisson-Boltzmann equation and its application to polyelectrolytes’, J. Chem. Phys. 70, 4995–5005.

    Article  Google Scholar 

  36. Attard, P., Mitchell, D.J. & Ninham, B.W. (1988) ‘Beyond Poisson-Boltzmann: Images and correlations in the electric double layer. I: Counterions only’, J. Chem. Phys. 88, 4987–4996. ‘— II: Symmetric electrolyte’, J. Chem. Phys. 89, 4358–4367.

    Article  Google Scholar 

  37. Kiessling, M.K.-H. (1989) ‘On the Equilibrium Statistical Mechanics of Isothermal Classical Self-Gravitating Matter’, J. Stat. Phys. 55, 203–257.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Garrett, A.J.M. (1990). Maximum Entropy Description of Plasma Equilibrium. In: Fougère, P.F. (eds) Maximum Entropy and Bayesian Methods. Fundamental Theories of Physics, vol 39. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0683-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0683-9_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6792-8

  • Online ISBN: 978-94-009-0683-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics