Skip to main content

Maximum Entropy with Nonlinear Constraints: Physical Examples

  • Chapter
Book cover Maximum Entropy and Bayesian Methods

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 39))

Abstract

The Maximum Entropy literature has hitherto recognised only problems with constraints linear in the required probability distribution. However, nonlinear-constraint problems go back unrecognised for over half of the 120-year lifetime of Maximum Entropy. The classic example is calculation of the charge density ρ in plasma in terms of the potential φ where the energy constraint is quadratic in φ In fact the Boltzmann distribution ρ α exp(−β q φ) traditionally derived under linear constraints, still holds; the condition for this is merely that a conserved quantity exists. The distribution can be combined with Poisson’s equation to give a single equation for φ or ρ. Uniqueness of the entropy maximum must be examined case-by-case in nonlinear problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boltzmann, L. (1868, 1871), in: Sitzungsberichte der kaiserliche Akademie der Wissenschaften in Wien, Mathematisch-Naturwissenschaftliche Klasse IIa: ‘Studien über das Gleichgewicht der lebendige Kraft zwischen bewegten materiellen Punkten’, 58, 517–560 (1868);

    Google Scholar 

  2. Boltzmann, L. ‘Über das Wärmegleichgewicht zwischen mehratomingen Gasmolekülen’, 63, 397–418 (1871)

    Google Scholar 

  3. ‘Einige allgemeine Sätze über Wärmegleichgewicht’ 63, 679–711 (1871)

    Google Scholar 

  4. ‘Analytischer Beweis des zweiten Hauptsatzes der mechanischen Wärmetheorie aus den Sätzen über das Gleichgewicht der lebendigen Kraft’, 63, 712–732 (1871). Reprinted in: L. Boltzmann (1909), Wissenschaftliche Abhandlungen 1, F. Hasenöhrl (ed.), Leipzig, 49–96; 237–258; 259–287; 288–308.

    Google Scholar 

  5. Jaynes, E.T. (1963) ‘Information Theory and Statistical Mechanics’, in: K.W. Ford (ed.), Statistical Physics (1962 Brandeis Lectures), Benjamin, New York, pp. 181–218. Reprinted as Chapter 4 of reference [4].

    Google Scholar 

  6. Gibbs, J.W. (1902) Elementary Principles in Statistical Mechanics, Scribner, New York. Reprinted in Collected Works (1936), Yale University Press, New Haven.

    MATH  Google Scholar 

  7. Jaynes, E.T. (1983) E.T. Jaynes: Papers on Probability, Statistics and Statistical Physics R.D. Rosencrantz (ed.), Synthese Library 158, Reidel, Dordrecht, Netherlands.

    Google Scholar 

  8. Evans, R.B. (1979) ‘A New Approach for Deciding Upon Constraints in the Maximum Entropy Formalism’, in: R.D. Levine & M. Tribus (eds.), The Maximum Entropy Formalism MIT Press, Cambridge, Massachusetts, pp. 169–206. We deny Evans’ assertion that the Maximum Entropy procedure is only consistent when used with linear constraints.

    Google Scholar 

  9. See almost any advanced statistical mechanics text, for example Grandy, W.T. Jr. (1987) Foundations of Statistical Mechanics, Volume I: Equilibrium Theory, Reidel, Dordrecht, Netherlands, Chapter 7.

    Google Scholar 

  10. Garrett, A.J.M. ‘Maximum Entropy Description of Plasma Equilibrium’; these Proceedings.

    Google Scholar 

  11. Debye, P. & Hückel, E. (1923) ‘Zur Theorie der Electrolyte, I: Gefrierpunktserniedrigung und verwandte Erscheinungen’, Physik. Zeits. 24, 185–206.

    Google Scholar 

  12. Garrett, A.J.M. & Poladian, L. (1988) ‘Refined Derivation, Exact Solutions and Singular Limits of the Poisson-Boltzmann Equation’, Ann. Phys. 188, 386–435.

    Article  MathSciNet  MATH  Google Scholar 

  13. reference [6], pp. 67–68.

    Google Scholar 

  14. Joyce, G. & Montgomery, D. (1973) ‘Negative Temperature States for the Two-Dimensional Guiding-Centre Plasma’, J. Plasma Phys. 10, 107–121.

    Article  Google Scholar 

  15. Ting, A.C., Chen, H.H. & Lee, Y.C. (1987) ‘Exact Solutions of a Nonlinear Boundary Value Problem: the Vortices of the Two-Dimensional Sinh-Poisson Equation’, Physica D. 26, 37–66.

    Article  MathSciNet  MATH  Google Scholar 

  16. see almost any plasma physics discussion of adiabatic invariants, for example Nicholson, D.R. (1983) Introduction to Plasma Theory, Wiley, New York, pp. 25–30.

    Google Scholar 

  17. Garrett, A.J.M. (1988) ‘Validity of the Boltzmann Distribution Under Non-Linear Constraints’, J. Phys. A 21, 1467–1469.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Garrett, A.J.M. (1990). Maximum Entropy with Nonlinear Constraints: Physical Examples. In: Fougère, P.F. (eds) Maximum Entropy and Bayesian Methods. Fundamental Theories of Physics, vol 39. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0683-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0683-9_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6792-8

  • Online ISBN: 978-94-009-0683-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics