Skip to main content

Constructing Priors in Maximum Entropy Methods

  • Chapter
Maximum Entropy and Bayesian Methods

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 39))

Abstract

We show how to construct the best prior for a Maximum Entropy procedure when two or more priors are conceivable or are proposed. The prior is a weighed sum of the conceivable priors with weights that depend exponentially on the overlap of the prior with the exponential part of the maximum entropy probability. With additional information, one can iteratively improve the prior and sharpen the choice between alternative priors. Our construction can be used to predict in some physical cases the probability distribution functions, and to make quantitative decisions in the presence of conflicting expert opinions.

Work Supported by the U.S. Department of Energy, BES-Materials Sciences, under contract W-31-109-ENG-38.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Englman, R., Levine, R.D. and Rivier, N. (1989) ‘On the construction of priors in maximum entropy methods’, submitted to IEEE Trans. Info. Theory; preprint, Imperial College (1987).

    Google Scholar 

  • Englman, R., Rivier, N. and Jaeger, Z. (1988 a) ‘Fragment-size distribution in disintegration by maximum-entropy formalism’, Phil. Mag.B 56, 751–769.

    Google Scholar 

  • Englman, R., Rivier, N. and Jaeger, Z. (1988b) ‘Size-distribution in sudden breakage by the use of entropy maximization’, J. Appl. Phys. 63, 4766–4768.

    Article  Google Scholar 

  • Grady, D.E. and Kipp, M.E. (1985) ‘Geometric statistics and dynamic fragmentation’, J. Appl. Phys. 58, 1210–1222.

    Article  Google Scholar 

  • Gull, S. (1987), seminar, Imperial College (private communication).

    Google Scholar 

  • Holian, B.L. and Grady, D.E. (1988) ‘Fragmentation by molecular dynamics: The microscopic “big bang”’ Phys. Rev. Letters 60, 1355–1358.

    Article  Google Scholar 

  • Hopfield, J.J. and Tank, D.W. (1985)‘“Neural” computation of decisions in optimization problems’, Biol. Cybern. 52, 141–152.

    MathSciNet  MATH  Google Scholar 

  • Jaynes, E.T. (1968) ‘Prior probabilities’, IEEE Trans. Syst. Sci. Cybernetics SSC-4, 227–241.

    Article  Google Scholar 

  • Jaynes, E.T. (1973) ‘The well-posed problem’, Found. Physics 3, 477–492.

    Article  MathSciNet  Google Scholar 

  • Jeffreys, H. (1961) Theory of Probability, 3rd. ed., Oxford Univ. Press.

    MATH  Google Scholar 

  • Khinchin, A.I. (1957) Mathematical Foundations of Information Theory, Dover, NY.

    MATH  Google Scholar 

  • Levine, R.D. (1986) ‘The theory and practice of the maximum entropy formalism’, in J.H. Justice (ed.), Maximum Entropy and Bayesian Methods in Applied Statistics, Cambridge Univ. Press, 59–84.

    Chapter  Google Scholar 

  • Levine, R.D. and Kosloff, R. (1979) ‘The well-reasoned choice: An information-theoretic approach to branching ratios in molecular rate processes’, Chem. Phys. Letters 28, 300–304.

    Article  Google Scholar 

  • Levine, R.D. and Tribus, M. (eds.) (1971) The Maximum Entropy Formalism, M.I.T. Press, Cambridge, MA.

    Google Scholar 

  • Mott, N.F. and Linfoot E.H. (1943), Ministry of Supply, AC 3348

    Google Scholar 

  • Renyi, A. (1970) Probability Theory, North-Holland, Amsterdam, ch. IX 5.

    Google Scholar 

  • Rivier, N. (1986) ‘Distribution of shapes and sizes by maximum entropy methods’, Ann. Isr. Phys. Soc. 8, 560–567.

    Google Scholar 

  • Rosenkrantz, R.D. (ed.) (1983) E.T. Jaynes, Papers on Probability Statistics and Statistical Physics, Reidel, Dordrecht.

    Google Scholar 

  • Shannon, C.E and Weaver, W. (1949) The Mathematical Theory of Communication, Univ. of Illinois Press, Urbana.

    MATH  Google Scholar 

  • Stoppard, T. (1967) Rosenkrantz and Guildenstern are Dead, Faber, London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Rivier, N., Englman, R., Levine, R.D. (1990). Constructing Priors in Maximum Entropy Methods. In: Fougère, P.F. (eds) Maximum Entropy and Bayesian Methods. Fundamental Theories of Physics, vol 39. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0683-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0683-9_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6792-8

  • Online ISBN: 978-94-009-0683-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics