Advertisement

The Anatomy of Dense Molecular Clouds

  • P. G. Mezger
  • R. Zylka
Part of the Astrophysics and Space Science Library book series (ASSL, volume 165)

Abstract

At mm/submm wavelengths, where the Rayleigh-Jeans approximation applies and dust optical depths are small, the observed surface brightness of dust emission is S v A∝NHσ v H Td. Here NH is the hydrogen column density, σ v H is the dust absorption cross section per H-atom at the frequency v and Td is the dust temperature. For volume densities nH ⩽1E5–1E6cm-3 molecular spectroscopy and dust continuum observations in general yield comparable results. But at higher volume densities and low gas temperatures it is found that molecular spectroscopy becomes an unreliable tracer of hydrogen column densities. Continuum observations of dust emission, on the other hand, provide the most reliable method of investigating especially very compact cores of molecular clouds, since σ v H and Td are usually known within factors of 2 or better. As examples recent observations of star forming cloud cores in the Orion A and B clouds and of two giant molecular clouds in the galactic center region will be summarizeded in this review.

Keywords

Molecular Cloud Dust Emission Galactic Center Cloud Core Dust Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barsony, M., Scoville, N.Z., Bally, J., Claussen, M.J.: 1989, Astrophys.J. 343, 212ADSCrossRefGoogle Scholar
  2. Bieging, J.H.: 1984, Astrophys.J. 286, 591ADSCrossRefGoogle Scholar
  3. Cox, P., Mezger, P.G.,: 1989, The Astronomy and Astrophysics Review 1, 49ADSCrossRefGoogle Scholar
  4. Glass I.S., Catchpole, R.M., Whitelock, P.A.: 1987, Monthly Notices Roy.Astron.Soc. 227, 373ADSGoogle Scholar
  5. Hildebrand, R.H., Whitcomb, S.E., Winston, R., Stiening, R.F., Harper, D.A. Moseley, S.H.: 1978, Astrophys.J. 219, L101ADSCrossRefGoogle Scholar
  6. Johnston, K., Palmer, P., Wilson, T., Bieging, J.: 1983, Ap.J. 271, L89–L93ADSCrossRefGoogle Scholar
  7. Kreysa, E.: 1985, in: Int.Symp. on MM- and Submm Wave Radio Astronomy, URSI, Granada, p.153Google Scholar
  8. Mathis, J.S., Mezger, P.G., Panagia, N.: 1983, Astron.Astrophys. 128, 212ADSGoogle Scholar
  9. Mezger, P.G., Chini, R., Kreysa, E., Gemünd, H.P.: 1986, Astron-Astrophys. 160, 324 (Paperl)ADSGoogle Scholar
  10. Mezger, P.G., Chini, R., Kreysa, E., Wink, J.E.: 1987, Astron.Astrophys. 182, 127ADSGoogle Scholar
  11. Mezger, P.G., Chini, R., Kreysa, E., Wink, J.E., Salter, C.J.: 1988, Astron.Astrophys. 191, 44ADSGoogle Scholar
  12. Mezger, P.G., Zylka, R., Salter, C.J., Wink, J.E., Chini, R., Kreysa, E., Tuffs, R.: 1989a, Astron.Astrophys. 209, 337ADSGoogle Scholar
  13. Mezger, P.G.: 1989, Proc. IAU Symp. 139 (in press)Google Scholar
  14. Mezger, P.G., Wink, J.E., Zylka, R.: 1989b, Astron.Astrophys. (in press)Google Scholar
  15. Moore, T.J.T., Chandler, C.J., Gear, W.K., Monntain, C.M.: 1989, M.N.R.A.S. 237, 1PADSGoogle Scholar
  16. Snell, R., Heyer, M.R., Schloerb, F.P.: 1989, Astrophys.J. 337, 739ADSCrossRefGoogle Scholar
  17. van de Hulst, H.C.: 1949, “The solid particles in interstellar space” Recherches Astronomiques de l’Observatoire d’Utrecht II, No.2Google Scholar
  18. White, J.G., Phillips, J.P., Watt, D.G.: 1981, M.N.R.A.S., 197, 745Google Scholar
  19. Wilson, T.L., Serabyn, E., Henkel, C., Walmsley, C.M.: 1986, Astron.Astrophys. 158, L1ADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • P. G. Mezger
    • 1
  • R. Zylka
    • 1
  1. 1.Max-Planck-Institut für RadioastronomieBonn 1Germany

Personalised recommendations