Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 313))

  • 273 Accesses

Abstract

In a recent paper of SHEN et al. energy-stability bounds were computed for the thermocapillary convection in a model of the float-zone crystal-growth process. The main application is expected to be the production of high-quality semiconductor material in low-gravity environments. Here we outline the physical and mathematical background and then describe in detail the numerical method used to solve the resulting nonlinear eigenvalue problem. Some information on the performance of the method is given and numerical results are presented for the zero gravity case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aitken, A. C. (1926) On Bernoulli’s numerical solution of algebraic equations, Proc. Roy. Soc. Edinburgh 46, 289.

    MATH  Google Scholar 

  • Bank, R., Mittelmann, H. D. (1986) Continuation and multigrid for nonlinear elliptic systems. In Multigrid Methods II(ed. W. Hackbusch, U. Trottenberg) Lect. Notes Math. 1228, Springer.

    Google Scholar 

  • Davis, S. H., von Kerczek, C. (1973) A reformulation of energy stability theory. Arch. Rat. Mech. Anal. 52, 112.

    Article  MathSciNet  MATH  Google Scholar 

  • Joseph, D. D. (1976) Stability of Fluid Motions I, II, Springer-Verlag, Berlin.

    Google Scholar 

  • Neitzel, G. P. (1984) Numerical computation of time-dependent Taylor-vortex flows in finite-length geometries. J. Fluid Mech. 141, 51.

    Article  MATH  Google Scholar 

  • Neitzel, G. P., Davis, S. H. (1981) Centrifugal instabilities during spin-down to rest in finite cylinders. Numerical experiments. J. Fluid Mech. 102, 329.

    Article  MATH  Google Scholar 

  • Preisser, F., Schwabe, P., Sharmann, A. (1983) Steady and oscillatoiy thermocapillary convection in liquid columns with free cylindrical surface. J. Fluid Mech. 126, 545.

    Article  Google Scholar 

  • Sen, A. K., Davis, S. H. (1982) Steady thermocapillary flow in two dimensional slots. J. Fluid Mech. 121, 163.

    Article  MATH  Google Scholar 

  • Shen, Y., Neitzel, G. P., jankowski, D. F., Mittelmann, H. D. (1989) Energy stability of thermocapillary convection in a model of the float-zone, crystal-growth process. Submitted to J. Fluid Mech.

    Google Scholar 

  • Sinha, S. C., Carmi, S. (1976) On the Liapunov-Movchan and the energy theories of stability. J. Appl. Math. Phys. 27, 607–612.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Mittelmann, H.D. (1990). Stability of Marangoni Convection in a MicroGravity Environment. In: Roose, D., Dier, B.D., Spence, A. (eds) Continuation and Bifurcations: Numerical Techniques and Applications. NATO ASI Series, vol 313. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0659-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0659-4_24

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6781-2

  • Online ISBN: 978-94-009-0659-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics