Indistinguishability, Interchangeability, and Indeterminism

  • Alexander Bach
Part of the Boston Studies in the Philosophy of Science book series (BSPS, volume 122)


Before the formalism of quantum theory was introduced, Bose and Einstein in 1924 and, without using this formalism, Fermi in 1925 introduced statistics for indistinguishable particles. Due to the fact, however, that indistinguishable particles were immediately incorporated into the new theory by Dirac in 1926, indistinguishability has always been considered as a typical quantum phenomenon which transcends classical conceptions.


Classical State Occupation Number Identical Particle Quantum Harmonic Oscillator Nonclassical State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Jauch, J. M. 1968. Foundations of Quantum Mechanics. Reading: Addison-Wesley.zbMATHGoogle Scholar
  2. [2]
    Girardeau, M. D. 1965. ‘Permutation Symmetry of Many-Particle Wave Functions’, Phys. Rev. 139 B500―B508.MathSciNetCrossRefGoogle Scholar
  3. [3]
    Leinaas, J. M. and Myrheim, J. 1977. ‘On the Theory of Identical Particles. Nuovo Cimento 37B 1–23.Google Scholar
  4. [4]
    Fleig, W. 1983. ‘On the Symmetry Breaking Mechanism of the Strong-Coupling BCS-Model’. Acta Physica Austriaca 55 135–153.MathSciNetGoogle Scholar
  5. [5]
    Ali, S. T. and Doebner, H. D. 1987. ‘Quantization, Topology and Ordering. In The Physics of Phase Space, ed. by Y. S. Kim and W. W. Zachary, Lecture Notes in Physics 278, Berlin: Springer, pp. 330–346.Google Scholar
  6. [6]
    Bach, A 1988. ‘The Concept of Indistinguishable Particles in Classical and Quantum Physics. Found. Phys. 18 639–649.MathSciNetCrossRefGoogle Scholar
  7. [7]
    Aldous, D. 1985. ’Exchangeability and Related Topics. In Ecole d’Eté de Probabilités de Saint-Flour XIII, P. L. Hennequin, Lecture Notes in Mathematics 1117, Berlin: Springer, pp. 1―198.Google Scholar
  8. [8]
    Brillouin, L. 1931. Die Quantenstatistik. Berlin: Springer.Google Scholar
  9. [9]
    von Misés, R. 1964. ‘Über Aufteilungs- und Besetzungswahrscheinlichkeiten’.In Selected papers of Richard von Mises, ed. by Ph. Frank et al., Providence: AMS, pp. 313―334.Google Scholar
  10. [10]
    Coleman, A. J. 1963. ‘Structure of Fermion Density Operators’. Rev. Mod. Phys. 35 668―689.CrossRefGoogle Scholar
  11. [11]
    Feller, W. 1966. An Introduction to Probability Theory and its Applications, Vol. 2. New York: Wiley.zbMATHGoogle Scholar
  12. [12]
    Bach, A. 1988. ‘Integral Representations for Indistinguishable Classical Particles: Brillouin Statistics. Phys. Lett. dA 129 440–442.MathSciNetCrossRefGoogle Scholar
  13. [13]
    Benczur, A. 1968. ‘On Sequences of Equivalent Events and the Compound Poisson Process’. Stud. Sci. Math. Hung. 2 451–458.MathSciNetGoogle Scholar
  14. [14]
    Bach, A. 1989. ‘On the Statistics of Nonclassical Photon States’. Phys. Lett. A 134 405―408.MathSciNetCrossRefGoogle Scholar
  15. [15]
    Hudson, R. L. and Moody, G. R. 1976. ‘Locally Normal Symmetric States and an Analogue of de Finetti’s Theorem’. Z. Wahrscheinlichkeitstheorie verw. Gebiete 33 343―351.MathSciNetzbMATHCrossRefGoogle Scholar
  16. [16]
    Accardi, L. Foundations of Quantum Mechanics: A Quantum Probabilistic Approach. Preprint, Rome.Google Scholar
  17. [17]
    Bach, A. and Lüxmann-Ellinghaus, 1986. ‘The Simplex Structure of the Classical States of the Quantum Harmonic Oscillator. Commun. Math. Phys. 107 553–560.zbMATHCrossRefGoogle Scholar
  18. [18]
    Bach, A. 1988. ‘Quanta and Coherent States, Lett. Math. Phys. 15 75―79.MathSciNetzbMATHCrossRefGoogle Scholar
  19. [19]
    Bach, A. 1987. ‘Integral Representations by Means of Coherent States Derived from de Finetti’s Theorem’. Europhys. Lett. 4 383–387.CrossRefGoogle Scholar
  20. [20]
    Bach, A. and Srivastav, A. 1989. ‘A Characterization of the Classical States of the Quantum Harmonic Oscillator by Means of de Finetti’s Theorem. Commun. Math. Phys. 123 453―462.MathSciNetzbMATHCrossRefGoogle Scholar
  21. [21]
    Walls, D. F. 1986. ‘Quantum Statistics of Nonlinear Optics’. In Frontiers of Nonequilibrium Statistical Physics, ed. by G. T. Moore and M. O. Scully, New York: Plenum, pp. 309―328.Google Scholar
  22. [22]
    Klauder, J. R. and Sudarshan, E. C. G. 1968. Fundamentals of Quantum Optics. New York: Benjamin.Google Scholar
  23. [23]
    Boltzmann, L. 1909. ‘Über die Beziehung zwischen dem zweiten Hauptsatze der mechanischen Wärmetheorie und der Wahrscheinlichkeitsrechnung, respektive den Sätzen über das Wärmegleichgewicht’. In L. Boltzmann, Wissenschaftliche Abhandlungen, ed by F. Hasenöhrl Vol. 2. J. A. Barth, Leipzig, pp. 164–223.Google Scholar
  24. [24]
    Natanson, L. 1911. ‘Über die statistische Theorie der Strahlung’. Phys. Zs. 12 659―666.Google Scholar
  25. [25]
    Bose, S. N. 1924. ‘Plancks Gesetz und Lichtquantenhypothese’. Z. Phys. 26 178–181.CrossRefGoogle Scholar
  26. [26]
    Planck, M. 1900. ‘Zur Theorie des Gesetzes der Energieverteilung im Normalspektrum’. Verh. d. Deutsch. Phys. Ges. (2) 2 237―245.Google Scholar
  27. [27]
    Maddox, J. 1987. ‘Telling One Particle from Another’. Nature 329 579.CrossRefGoogle Scholar
  28. [28]
    Bach, A. 1985. ‘On the Quantum Properties of Indistinguishable Classical Particles’. Lett. Nuovo Cimento 43 383–387.MathSciNetCrossRefGoogle Scholar
  29. [29]
    Feynman, R. P. 1961. The theory of fundamental processes. New York: Benjamin.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • Alexander Bach

There are no affiliations available

Personalised recommendations