Advertisement

Method, Theory, and Statistics: The Lesson of Physics

  • Lorenz Krüger
Chapter
  • 649 Downloads
Part of the Boston Studies in the Philosophy of Science book series (BSPS, volume 122)

Abstract

The subtitle of my paper — The Lesson of Physics — is an overstatement in several ways: The lesson is, of course, no more than the lesson I have extracted from the history of physics for myself, and that I would like others to believe as well. Hence, it is only one lesson among several possible lessons, i.e. a view suggested for discussion. Moreover the singular ‘the lesson’ requires a historical survey of about 200 years of physics and a systematic analysis of its present results. Needless to say, then, that I rely heavily on the work of others, among them several participants of this conference.

Keywords

Statistical Pattern Integer Spin Dynamical History Antisymmetric State Strange Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Bessel, Friedrich Wilhelm. 1838. ‘Untersuchungen über die Wahrscheinlichkeit der Beobachtungsfehler’. Astronomische Nachrichten 15 369–404.CrossRefGoogle Scholar
  2. Boltzmann, Ludwig. 1872. ‘Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen’. In Boltzmann 1968, vol. I, 316–402.Google Scholar
  3. Boltzmann, Ludwig. 1877. ‘Über die Beziehung zwischen dem zweiten Hauptsatz der mechanischen Wärmetheorie und der Wahrscheinlichkeitsrechnung respektive den Sätzen über das Wärmegleichgewicht’. In Boltzmann 1968, vol. II, 164–223.Google Scholar
  4. Boltzmann, Ludwig. (1909) 1968. Wissenschaftliche Abhandlungen, ed. by F. Hasenöhrl. Leipzig: Barth. Repr. New York: Chelsea.Google Scholar
  5. Brush, Stephen G. 1976. The Kind of Motion We Call Heat, 2 vols. Amsterdam: North Holland.Google Scholar
  6. Costantini, Domenico, Maria-Carla Galavotti, and R. Rosa. 1983. ‘A Set of “Ground Hypotheses” for Elementary Particle Statistics’, IINuovo Cimento 74B 151–158.MathSciNetCrossRefGoogle Scholar
  7. Eisenhart, Churchill. 1971. ‘The Development of the Concept of Best Mean of a Set of Measurements from Antiquity to the Present Day’, Unpublished presidential address, American Statistical Association, 131st Annual Meeting, Fort Collins, Colorado.Google Scholar
  8. Gamow, George. 1928. ‘Zur Quantentheorie des Atomkerns’, Zeitschrift fir Physik 51 204–212.CrossRefGoogle Scholar
  9. Gauss, Carl Friedrich. 1809. Theoria motus corporum coelestium in sectionibus conicis solem ambientium. Contained in: Werke. Leipzig/Berlin. 1863–1933.Google Scholar
  10. Gigerenzer, Gerd et al. 1989. The Empire of Chance — How Probability Changed Science and Everyday Life. Cambridge University Press.Google Scholar
  11. Gurney, R. W. and Condon, E. U. 1929. ‘Quantum Mechanics and Radioactive Disintegration’. Physical Review 33 127–140.CrossRefGoogle Scholar
  12. Hagen, G. H. L. 1837. Grundzüge der Wahrscheinlichkeitsrechnung. Berlin: Dümmler.Google Scholar
  13. Maxwell, James Clerk. 1860. ‘Illustrations of the Dynamical Theory of Gases’. In Maxwell 1890, vol. 1:377–409.Google Scholar
  14. Maxwell, James Clerk. 1878. ‘On Boltzmann’s Theorem on the Average Distribution of Energy in a System of Material Points’. In: Maxwell 1890, vol. 2:713–741.Google Scholar
  15. Maxwell, James Clerk. 1890. Scientific Papers, ed. by W. D. Niven, 2 Vols. Cambridge: Cambridge University Press.Google Scholar
  16. Pauli, Wolfgang. 1940. ‘The Connection between Spin and Statistics’. Physical Review 58 716ff.CrossRefGoogle Scholar
  17. Prigogine, Ilya. 1962. Non-Equilibrium Statistical Mechanics, New York: Interscience Publishers.zbMATHGoogle Scholar
  18. Prigogine, Ilya. 1984. From Becoming to Being. 2nd ed. San Francisco: Freeman.Google Scholar
  19. Rutherford, Ernest, and Frederick Soddy. 1903. ‘Radioactive Change’, Philosophical Magazine 5.Google Scholar
  20. Sheynin, Oscar. 1977. ‘Laplace’s Theory of Errors’, Archive for History of Exact Sciences 17 1–61.MathSciNetzbMATHCrossRefGoogle Scholar
  21. Stöckler Manfred. 1987. Philosophische Probleme der Elementarteilchenphysik (Book, to be published).Google Scholar
  22. Van Fraassen, Bas C. 1984. The Problem of Indistinguishable Particles’. In: Science and Reality: Recent Work in the Philosophy of Science — Essays in Honor of Ernan McMullin, ed. by J. T. Cushing, C. F. Delaney, and G. M. Gutting, University of Notre Dame Press, pp. 153–172.Google Scholar
  23. Von Mises, Richard. 1928. ‘Wahrscheinlichkeit, Statistik und Wahrheit’. Quoted from the English translation of the 3rd ed. of 1951 which appeared as Probability, Statistics, and Truth. London: Allen and Unwin 1957.Google Scholar
  24. Von Plato, Jan. 1987. ‘Probabilistic Physics the Classical Way’. In The Probabilistic Revolution. Vol. 2: Ideas in the Sciences, ed. by L. Krüger, G. Gigerenzer, and Mary S. Morgan, Cambridge/Mass.: MIT Press, pp. 379–407.Google Scholar
  25. Young, Thomas. 1819. ‘Remarks on the Probability of Error in Physical Observations’, Letter to Henry Cater. Philosophical Transactions of the Royal Society of London 109, part I, 70–95.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • Lorenz Krüger

There are no affiliations available

Personalised recommendations