Skip to main content

Physiological heterogeneity of coronary blood flow in space and time by contrast echocardiography

  • Chapter
Ultrasound in Coronary Artery Disease

Abstract

It is well recognized that blood flow at the inlet of the coronary system varies during the cardiac cycle, being higher during diastole than during systole. This is due to the generation of intramyocardial pressure during cardiac contraction, which limits coronary blood flow [1]. The flow, in fact, is inversely related to coronary resistance, an entity which in turn is comprised of 3 factors: viscous resistance, auto-regulatory resistance and compressive resistance [2]. The latter determinant is related to the compression of intramural vessels due to intramyocardial pressure and is characterized by both spatial and temporal heterogenity [3–5]. In fact, compressive resistance is three to four times higher during systole than in diastole, and it increases progressively from outer to the inner myocardial layers. As a result of compressive resistance, systolic perfusion would be anticipated to be predominantly subepicardial, and blood flow could even cease during systole in the inner portion of subendocardial layers [6, 7].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sabiston DC Jr, Gregg DE (1957) Effect of cardiac contraction on coronary blood flow. Circulation 15: 14.

    PubMed  Google Scholar 

  2. Klocke FJ (1976) Coronary blood flow in man. Prog Cardiovas Dis 19: 117.

    Article  CAS  Google Scholar 

  3. Armour JA, Randall WC (1971) Canine left ventricular intramyocardial pressures. Am J Physiol 220: 1833.

    PubMed  CAS  Google Scholar 

  4. Sestier FJ, Mildenberger RR, Klassen GA (1978) Role of autoregulation in spatial and temporal perfusion heterogeneity of canine myocardium. Am J Physiol 71: 235.

    Google Scholar 

  5. Stein PD, Marzilli M, Sabbah HN, Lee T (1980) Systolic and diastolic pressure gradients within the left ventricular wall. Am J Physiol 238: H625.

    PubMed  CAS  Google Scholar 

  6. L’Abbate A, Marzilli M, Ballestra AM, Camici P (1978) Myocardial contraction: An additional determinant of transmural flow distribution, in: Maseri A, Klassen GA, Lesch M (eds), Primary and Secondary Angina Pectoris, p 21. New York: Grune & Stratton.

    Google Scholar 

  7. Marzilli M, Goldstein S, Sabbah HN, Lee T, Stein PD (1979) Modulating effect of regional myocardial performance on local myocardial perfusion in the dog. Circ Res 45: 634.

    PubMed  CAS  Google Scholar 

  8. Moir TW (1972) Subendocardial distribution of coronary blood flow and the effect of antianginal drugs. Circ Res 30: 621.

    PubMed  CAS  Google Scholar 

  9. Hoffman JIE, Buckberg GD (1976) Transmural variation in myocardial perfusion, in: Yu PN, Goodwin JF (eds), Progress in Cardiology, p 37. Philadelphia: Lea & Febiger.

    Google Scholar 

  10. Myers WW, Honig CR (1964) Number and distribution of capillaries as determinants of myocardial oxigen tension. Am J Physiol 207: 653.

    PubMed  CAS  Google Scholar 

  11. Winbury MM, Weiss HR (1974) Nitroglicerin and Chromonar on small-vessel blood content of the ventricular walls. Am J Physiol 226: 838.

    PubMed  Google Scholar 

  12. L’Abbate A, Marzilli M, Ballestra AM, Camici P, Trivella MG, Pelosi G, Klassen G (1980) Opposite transmural gradients of coronary resistance and extravascular pressure in the working dog’s heart. Cardiovas Res 14: 21.

    Article  Google Scholar 

  13. Rembert JC, Greenfield JC Jr, Alexander JA, Cobb FR (1978) Transmural distribution of systolic myocardial blood flow in the awake dog, in: Baan J, Noordergraaf A, Raines J (eds), Cardiovascular System Dynamics, p 40. Cambridge: Massachussets, The MIT Press.

    Google Scholar 

  14. Downey JM, Kirk ES (1974) Distribution of the coronary blood flow across the canine heart wall during systole. Circ Res 34: 251.

    PubMed  CAS  Google Scholar 

  15. Hess DS, Bache RJ (1976) Transmural distribution of myocardial blood flow during systole in the awake dog. Circ Res 38: 5.

    PubMed  CAS  Google Scholar 

  16. Heyman MA, Payne BD, Hoffman JIE, Rudolph AM (1977) Blood flow measurements with radionuclide-labelled particles. Prog Cardiovasc Dis 20: 55.

    Article  Google Scholar 

  17. DeMaria AN, Bommer WJ, Riggs K, Dajee A, Keown M, Kwan OL, Mason DT (1980) Echocardiographic visualization of myocardial perfusion by left heart and intracoronary injections of echo contrast agents. Circulation 62 (suppl III): III — 143.

    Google Scholar 

  18. Armstrong WF, Mueller TM, Kinney EL, Tickner EG, Dillon JC, Feigenbaum H (1982) Assessment of myocardial perfusion abnormalities with contrast-enhanced two—dimen-—sional echocardiography. Circulation 66: 166.

    Article  PubMed  CAS  Google Scholar 

  19. Tei C, Sakamaki T, Shah PM, Meerbaum S, Shimoura K, Kondo S, Corday E (1983) Myocardial contrast echocardiography: A reproducible technique of myocardial opacification for identifying regional perfusion deficits. Circulation 67: 585.

    Article  PubMed  CAS  Google Scholar 

  20. Kemper AJ, O’Boyle JE, Sharma S, Cohen CA, Kloner RA, Khuri SF, Parisi AF (1983) Hydrogen peroxide contrast-enhanced Two-dimensional echocardiography real time in vivo delineation of regional myocardial perfusion. Circulation 68: 603.

    Article  PubMed  CAS  Google Scholar 

  21. Sakamaki T, Tei C, Meerbaum S, Shimour K, Kondo S, Fishbein MC, Y-Rit J, Shah PM, Corday E (1984) Verification of myocardial contrast two-dimensional echocardiographic assessment of perfusion defects in ischemic myocardium. J Am Coll Cardiol 3: 34.

    Article  PubMed  CAS  Google Scholar 

  22. Kaul S, Pandian NG, Okada RD, Pohost GM, Weyman AE (1984) Contrast echocardiography in acute myocardial ischemia. I. In vivo determination of total left ventricular ‘area at risk’. J Am Coll Cardiol 4: 1272.

    Google Scholar 

  23. Armstrong WF, West SR, Dillon JC, Feigenbaum H (1984) Assessment of localization and size of myocardial infarction with contrast-enhanced echocardiography. II. Application of digital imaging techniques. J Am Coll Cardiol 4: 141.

    Article  PubMed  CAS  Google Scholar 

  24. Kemper AJ, Force T, Perkins L, Gilfoil M, Parisi AF (1986) In vivo prediction of the transmural extent of experimental acute myocardial infarction using contrast echocardiography. J Am Coll Cardiol 8: 143.

    Article  PubMed  CAS  Google Scholar 

  25. Lim YJ, Nanto S, Masuyama T, Kodama K, Ikeda T, Kitabatake A, Kamada T (1989) Visualization of subendocardial myocardial ischemia with myocardial contrast echocardiography in humans. Circulation 79: 233.

    Article  PubMed  CAS  Google Scholar 

  26. Kondo S, Tei C, Meerbaum S, Corday E, Shah PM (1984) Hyperemic response of intra- coronary contrast agents during two-dimensional echographic delineation of regional myocardium. JAmer Coll Cardiol 4: 149.

    Article  CAS  Google Scholar 

  27. Smith MD, Kwan OL, Reiser J, DeMaria AN (1984) Superior Intensity and reproducibility of SHU-454, a new right heart contrast agent. J Am Coll Cardiol 3: 992.

    Article  PubMed  CAS  Google Scholar 

  28. Schartl M, Fritsch T, Miszalok V (1986) Quantification of myocardial perfusion by contrast echocardiography. Can J Cardiol (suppl A): 25A.

    Google Scholar 

  29. Kaul S, Gillam LD, Weiman AE (1985) Contrast echocardiography in acute myocardial ischemia. II. The effect of site of injection of contrast agent on the estimation of area at risk for necrosis after coronary occlusion. J Am Coll Cardiol 6: 825.

    Article  PubMed  CAS  Google Scholar 

  30. Zwehl W, Areeda J, Schwartz G, Feinstein S, Ong K, Meerbaum S (1984) Physical factors influencing quantitation of two-dimensional contrast-echo amplitudes. J Am Coll Cardiol 4: 157.

    Article  PubMed  CAS  Google Scholar 

  31. Taylor AL, Collins SM, Skorton DJ, Kieso RA, Melton J, Kerber RE (1985) Artifactual regional gray level variability in contrast-enhanced two-dimensional echocardiographic images: Effect on measurement of the coronary perfusion bed. J Am Coll Cardiol 6: 831.

    Article  PubMed  CAS  Google Scholar 

  32. Goldman ME, Mindich BP (1984) Intraoperative cardioplegic contrast echocardiography for assessing myocardial perfusion during open heart surgery. J Am Coll Cardiol 4: 1029.

    Article  PubMed  CAS  Google Scholar 

  33. Rovai D, Nissen SE, Elion JE, Smith M, L’Abbate A, Kwan OL, DeMaria AN (1987) Contrast echo washout curves from the left ventricle: Application of basic principles of indicator-dilution theory and calculation of ejection fraction. J Am Coll Cardiol 10: 125.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Kluwer Academic Publishers

About this chapter

Cite this chapter

Rovai, D. et al. (1991). Physiological heterogeneity of coronary blood flow in space and time by contrast echocardiography. In: Iliceto, S., Rizzon, P., Roelandt, J.R.T.C. (eds) Ultrasound in Coronary Artery Disease. Developments in Cardiovascular Medicine, vol 113. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0611-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0611-2_30

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6762-1

  • Online ISBN: 978-94-009-0611-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics