Skip to main content

Intracoronary blood flow velocity, reactive hyperemia and coronary blood flow reserve during and following PTCA

  • Chapter
Ultrasound in Coronary Artery Disease

Abstract

Since the introduction of percutaneous transluminal coronary angioplasty (PTCA) in 1977 [1], the procedure has gained increasing importance in the treatment of coronary artery obstructions. So far, the immediate results of the procedure have been assessed by coronary angiography and the residual pressure gradient. However, the change in luminal size of an artery following the mechanical disruption of its internal wall cannot be assessed accurately from the detected angiographic contours [2, 3]. The measured residual pressure gradient may have short and long-term prognostic value, but it reflects only the hemodynamic state at rest [4–6] Recently the assessment of coronary flow reserve has been proposed as a better method to evaluate the functional results of dilatation of a coronary artery obstruction [7–10]. Papaverine is currently regarded as the vasodilator of choice for the induction of maximal hyperemia, as intracoronary administration results in an immediate, potent and short-lasting hyperemia [11, 12]. Intracoronary blood flow velocity measurements with a Doppler probe, and the radiographic assessment of myocardial perfusion with contrast media have previously been used to investigate regional coronary flow reserve [13–17]. In the present study we compared both techniques in the setting of PTCA, and compared the pharmacologically induced vasodilation after intracoronary papaverine with reactive hyperemia following transluminal occlusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Grüntzig AR, Senning A, Siegenthaler WE (1979) Nonoperative dilatation of coronary artery stenosis: percutaneous transluminal angioplasty. N Engl J Med 301: 61–68.

    Article  PubMed  Google Scholar 

  2. Block PC, Myler RK, Stertzer S, Fallon JT (1981) Morphology after transluminal angioplasty in human beings. N Engl J Med 305: 382–385.

    Article  PubMed  CAS  Google Scholar 

  3. Serruys PW, Reiber JHC, Wijns W, Brand M van den, Kooyman CJ, Katen HJ ten, Hugen- holtz PG (1984) Assessment of percutaneous transluminal coronary angioplasty by quantitative coronary angiography: Diameter versus densitometric area measurements. Am J Cardiol 54: 482–488.

    Article  PubMed  CAS  Google Scholar 

  4. Leimgruber PP, Roubin GS, Hollman J, Cotsonis GA, Meier B, Douglas JS, King SB, Gruentzig AR (1986) Restenosis after successful coronary angioplasty in patients with single-vessel disease. Circulation 73: 710–717.

    Article  PubMed  CAS  Google Scholar 

  5. Serruys PW, Wijns W, Reiber JHC, Feyter P de, Brand M van den, Piscione F, Hugenholtz PG (1985) Values and limitations of transstenotic pressure gradients measured during percutaneous coronary angioplasty. Herz 6: 337–342.

    Google Scholar 

  6. Redd DCB, Roubin GS, Leimgruber PP, Abi-Mansour P, Douglas JS, King SB (1987) The transstenotic pressure gradient trend as a predictor of acute complications after percutaneous transluminal coronary angioplasty. Circulation 76: 792–801.

    Article  PubMed  CAS  Google Scholar 

  7. Hoffman JIE (1984) Maximal coronary flow and the concept of vascular reserve. Circulation 70: 153–159.

    Article  PubMed  CAS  Google Scholar 

  8. Klocke FJ (1983) Measurements of coronary blood flow and degree of stenosis: Current clinical implications and continuing uncertainties. J Am Coll Cardiol: 31–41.

    Google Scholar 

  9. Serruys PW, Juillière Y, Zijlstra F, Beatt KJ, Feyter PJ de, Suryapranata H, Brand M vd, Roelandt J (1988) Coronary Blood Flow velocity during PTCA: A guide-line for assessment of functional results. Am J Cardiol 61: 253 - 259.

    Article  PubMed  CAS  Google Scholar 

  10. Zijlstra F, Reiber JC, Juillière Y, Serruys PW (1988) Normalization of coronary flow reserve by percutaneous transluminal coronary angioplasty. Am J Cardiol 61: 55–60.

    Article  PubMed  CAS  Google Scholar 

  11. Wilson RF, White CW (1986) Intracoronary papaverine: An ideal coronary vasodilator for studies of the coronary circulation in conscious humans. Circulation 73: 444–451.

    Article  PubMed  CAS  Google Scholar 

  12. Zijlstra F, Serruys PW, Hugenholtz PG (1986) Papaverine: The ideal coronary vasodilator for investigating coronary flow reserve: A study of timing, magnitude, reproducibility and safety of the coronary hyperemic response after intracoronary papaverine. Cath Cardiovasc Diagn 12: 298–303.

    Article  CAS  Google Scholar 

  13. Wilson RF, Laughlin DE, Ackell PH, Chilian WM, Holida MD, Hartley CJ, Armstrong ML, Marcus ML, White CW (1985) Transluminal subselective measurement of coronary artery blood flow velocity and vasodilator reserve in man. Circulation 72: 82–92.

    Article  PubMed  CAS  Google Scholar 

  14. Bates ER, Aueron FM, Le Grand V, Le Free MT, Mancini GBJ, Hodgson JM, Vogel RA (1985) Comparative long-term effects of coronary artery bypass graft surgery and percutaneous transluminal coronary angioplasty on regional coronary flow reserve. Circulation 72: 833–839.

    Article  PubMed  CAS  Google Scholar 

  15. Zijlstra F, van Ommeren J, Reiber JHC, Serruys PW (1987) Does quantitative assessment of coronary artery dimensions predict the physiological significance of a coronary stenosisCirculation 75: 1154–1161.

    Article  PubMed  CAS  Google Scholar 

  16. Vogel RA (1985)The radiographic assessment of coronary blood flow parameters. Circulation 72: 460–465.

    Google Scholar 

  17. Sibley DH, Millar HD, Hartley CJ, Whitlow PL (1986) Subselective measurement of coronary blood flow velocity using a steerable Doppler catheter. JACC 8: 1332–1340.

    PubMed  CAS  Google Scholar 

  18. Marcus ML (1983) Physiological effects of a coronary stenosis, in: The Coronary Circulation in Health and Disease, pp 242–269. New York: Mc Graw-Hill.

    Google Scholar 

  19. Marcus ML (1983) Effects of cardiac hypertrophy on the coronary circulation, in: The Coronary Circulation in Health and Disease, pp 285–306. New York: Mc Graw-Hill.

    Google Scholar 

  20. Marcus ML, Doty DB, Hiratzka LP, Whight CB, Eastham CL (1985) Decrease coronary reserve: A mechanism for angina pectoris in patients with aortic stenosis and normal coronary arteries. N Engl J Ned 307: 1362–1366.

    Article  Google Scholar 

  21. Cole JS, Hartley CJ (1977) The pulsed Doppler coronary artery catheter. Preliminary report of a new technique for measuring rapid changes in coronary artery flow velocity in man. Circulation 56: 18–25.

    PubMed  CAS  Google Scholar 

  22. Hartley CJ, Cole JS (1974) An ultrasonic pulsed Doppler system for measuring blood flow in small vessels. J Appl Physiol 37: 626–629.

    PubMed  CAS  Google Scholar 

  23. Wilson RF, Laughlin DE, Ackell PH, Chilian WM, Holida MD, Hartley CJ, Armstrong ML, Marcus ML, White CW (1985) Transluminal subelective measurement of coronary artery blood flow velocity and vasodilator reserve in man. Circulation 72: 82–92.

    Article  PubMed  CAS  Google Scholar 

  24. Reiber JHC, Serruys PW, Kooyman CJ, Wijns W, Slager CJ, Gerbrand JJ, Schuurbiers JCH, Boer A den, Hugenholtz PG (1985) Assessment of short-, medium-, and long-term variations in arterial dimensions from computer-assisted quantification of coronary cinean- giograms. Circulation 71: 280–288.

    Article  PubMed  CAS  Google Scholar 

  25. Reiber JHC, Kooijman CJ, Slager CJ, Gerbrands JJ, Schuurbiers JHC, Boer A den, Wijns W, Serruys PW, Hugenholtz PG (1984) Coronary artery dimensions from cineangiograms; methodology and vasodilation of a computer-assisted analysis procedure. IEEE Trans Med Imaging MI-3: 131–141.

    Google Scholar 

  26. Reiber JHC, Kooijman CJ, Boer A den, Serruys PW (1985) Assessment of dimensions and image quality of coronary contrast catheters from cineangiograms. Cath Cardiovasc Diagn 11: 521–531.

    Article  CAS  Google Scholar 

  27. Zijlstra F, Reiber JHC, Serruys PW (1988) Does intracoronary papaverine dilate epicardial coronary arteries? Implications for the assessment of coronary flow reserve. Cath Cardiovasc Diagn 14: 1–6.

    Article  CAS  Google Scholar 

  28. Werf T van der, Heethaar RM, Stegehuis H, Meyler FL (1984) The concept of apparent cardiac arrest as a prerequisite for coronary digital subtraction angiography. J Am Coll Cardiol 4: 239–244.

    Article  PubMed  Google Scholar 

  29. Rentrop KP, Cohen M, Blanke H, Philips RA (1985) Changes in collateral channel filling immediately after controlled coronary artery occlusion by an angioplasty balloon in human subjects. J Am Coll Cardiol 5: 587–592.

    Article  PubMed  CAS  Google Scholar 

  30. Kajiva F, Ogasawara Y, Tsuyioka K, Nakai M, Coto M, Wada Y, Tadaoka S, Matsuoka S, Mito K, Fuwruara T (1986) Evaluation of human coronary blood flow with an 80 channel transform methods during cardiac surgery. Circulation 74 (suppl 3): 53–60.

    Google Scholar 

  31. Sibley D, Bulle T, Baxley W, Dean L, Whitlow P (1986) Continuous on-line assessment of coronary angioplasty with a Doppler tipped balloon dilatation catheter (abstracts). Circulation 74 (suppl 2): 459.

    Google Scholar 

  32. Marcus M, Wright C, Doty D, Eastham C, Laughlin D, Krumm P, Fastenow C, Brody M (1981) Measurements of coronary velocity and reactive hyperemia in the coronary circulation of humans. Cire Res 877–897.

    Google Scholar 

  33. Mc Pherson DD, Hiratzka LF, Lamberth WC, Brandt B, Hunt M, Kieso RA, Marcus ML, Kerber RF (1987) Delineation of the extent of coronary atherosclerosis by high-frequency epicardial echocardiography. N Engl Med 316: 304–309.

    Article  CAS  Google Scholar 

  34. Kilpatrick D, Webber SB (1986) Intravascular blood velocity in simulated coronary artery stenoses. Cathet Cardiovasc Diagn 12: 317–3.

    Article  PubMed  CAS  Google Scholar 

  35. Wangler RD, Peters KG, Laughlin DE, Tomanek RJ, Marcus ML (1981) A method for continuously assessing coronary velocity in the rat. Am J Physiol 10: H816–H820.

    Google Scholar 

  36. Marcus ML, Wilson RF, White CW (1987) Methods of measurements of myocardial blood flow in patients: A critical review. Circulation 76: 245–253.

    Article  PubMed  CAS  Google Scholar 

  37. Hodgson JM, Mancini GBJ, LeGrand V, Vogel RA (1985) Characterization of changes in coronary blood flow during the first six sec after intracoronary contrast injectionInvest Radiol 20: 246–252.

    Article  PubMed  CAS  Google Scholar 

  38. Hodgson JM, LeGrand V, Bates ER, Mancini GBJ, Aueron FM, O’Neill WW, Simon SB, Beauman GJ, LeFree MT, Vogel RA (1985) Validation in dogs of a rapid angiographic technique to measure relative coronary blood flow during routine cardiac catheterization. Am J Cardiol 55: 188–193.

    Article  PubMed  CAS  Google Scholar 

  39. Klocke FJ (1987) Measurements of coronary flow reserve: Defining pathophysiology versus making decisions about patient care. Circulation 76: 1183–1189.

    Article  PubMed  CAS  Google Scholar 

  40. Bookstein JJ, Higgins CB (1977) Comparative efficacy of coronary vasodilatory methods. Investigate Radiology 12: 121–127.

    Google Scholar 

  41. Wilson RF, Marcus ML, White CW (1987) Prediction of the physiologic significance of coronary arterial lesions by quantitative lesion geometry in patients with limited coronary artery disease. Circulation 75: 723–732.

    Article  PubMed  CAS  Google Scholar 

  42. Hodgson JM, Riley RS, Most AS, Williams DO (1987) Assessment of coronary flow reserve using digital angiography before and after successful percutaneous transluminal coronary angioplasty. Am J Cardiol 60: 61–65.

    Article  PubMed  CAS  Google Scholar 

  43. Bates ER, Mc Gillem MJ, Beats TF, DeBoe SF, Mickelson JK, Mancini GBJ, Vogel RA (1987) Effect of angioplasty induced endothelial denudation compared with medial injury on regional coronary blood flow. Circulation 76: 710–716.

    Article  PubMed  CAS  Google Scholar 

  44. Serruys PW, Wijns W, Brand M van den, Mey S, Slager C, Schuurbiers JCH, Hugenholtz PG, Brower RW (1984) Left ventricular performance, regional blood flow, wall motion, and lactate metabolism during transluminal angioplasty. Circulation 70: 25–36.

    Article  PubMed  CAS  Google Scholar 

  45. Feldman RL, Conti R, Pepine CJ (1983) Regional coronary venous flow responses to transient coronary artery occlusion in human beings. J Am Coll Cardiol 2: 1–10.

    Article  PubMed  CAS  Google Scholar 

  46. Rothman MT, Baim DS, Simpson JB, Harrison DC (1982) Coronary hemodynamics during percutaneous transluminal coronary angioplasty. Am J Cardiol 49: 1615–1622.

    Article  PubMed  CAS  Google Scholar 

  47. Serruys PW, Piscione F, Wijns W, Harmsen E, Brand M van den, Feyter P de, Hugenholtz PG, Jong JW de (1986) Myocardial release of hypoxanthine and lactate during percutaneous transluminal coronary angioplasty: A quickly reversible phenomenon, but for how long’, in: Serruys PW, Transluminal Coronary Angioplasty: An Investigational Tool and a Non-operative Treatment of Acute Myocardial Ischemia, p 75. ( Doctoral thesis, Erasmus University, The Netherlands ).

    Google Scholar 

  48. Webb SC, Rickards AF, Poole-Wilson PA (1983) Coronary sinus potassium concentration recorded during coronary angioplasty. Br Heart J 50: 146–152.

    Article  PubMed  CAS  Google Scholar 

  49. Peterson MB, Machay V, Block PC, Palacios I, Philbin D, Watkins WD (1986) Thromboxane release during percutaneous transluminal coronary angioplasty. Am Heart J: 111–119.

    Google Scholar 

  50. Wilson RF, Aylward PE, Leimbach WH, Talman CL, White CW (1986) Coronary flow reserve late after PTCA. Do the early alterations persist? (abstracts). J Am Coll Cardiol 7: 212A (suppl).

    Google Scholar 

  51. Johnson MR, Brayden GP, Ericksen EE, Collins SM, Skaton DJ, Harrison DG, Marcus ML, White CW (1986) Changes in cross-sectional area of the coronary lumen in the six months after angioplasty: A quantitative analysis of the variable response to percutaneous transluminal angioplasty. Circulation 73: 467–475.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Kluwer Academic Publishers

About this chapter

Cite this chapter

Serruys, P.W. et al. (1991). Intracoronary blood flow velocity, reactive hyperemia and coronary blood flow reserve during and following PTCA. In: Iliceto, S., Rizzon, P., Roelandt, J.R.T.C. (eds) Ultrasound in Coronary Artery Disease. Developments in Cardiovascular Medicine, vol 113. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0611-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0611-2_25

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6762-1

  • Online ISBN: 978-94-009-0611-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics