Skip to main content

Possibilities of ultrasonic tissue identification in the heart

  • Chapter
Ultrasound in Coronary Artery Disease

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 113))

  • 77 Accesses

Abstract

Today the major application of echocardiography techniques has been a direct diagnostic translation of motional, geometrical and blood velocity parameters to cardiac abnormalities. It can be stated that during the last decade many diagnoses that might be derived from these parameters have been described. In the above quoted ‘conventional’ echo methods the echo image is based on a fixed setting for the sound velocity and an overall compensation for attenuation as function of depth. With conventional echography small local changes in sound velocity, attenuation and/or backscatter are neglected in the way the data is handled.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wild J J, Crawford HD, Reid JM (1957) Visualization of the excised human heart by means of reflected ultrasound or echography. Preliminary report. Am Heart J 54: 903–906.

    Article  PubMed  CAS  Google Scholar 

  2. Gramiak R, Waag RC, Schenk EA, Lee PPK, Thomson K, Mackintosh P (1979) Ultrasonic imaging of experimental myocardial infarcts, in: Lanceé CT (ed), Echocardiology, pp 99– 106. The Hague: Martinus Nijhoff Publishers.

    Google Scholar 

  3. Fitzgerald PJ, Joynt LF, Green SS, Popp RL (1982) Computerized echocardiographic tis-sue characterization, in: Computers in Cardiology 1981, pp 395–398. IEEE Computer Society Press, Silver Spring MD.

    Google Scholar 

  4. Leeman S, Leeks R, Sutton P (1979) Analysis of pulse echo ultrasonic imagesin: Proceedings of the VI International Conference on Information Processing in Medical Imaging.

    Google Scholar 

  5. Hill CR (1974) Interactions of ultrasound with tissues, in: de Vlieger M, White DN, McCready VR (eds), Ultrasonics in Medicine, pp 14–20. Amsterdam: Experta Medica.

    Google Scholar 

  6. Nicholas D, Nicholas AW, Greenbaum R (1983) An ultrasonic determination of cardiac muscle structures, in: Powers J (ed), Acoustical Imaging 11. New York: Plenum Press.

    Google Scholar 

  7. Wells PNT (1981) Present status of tissue identification, in: Rijsterborgh H (ed), Echo- cardiology, pp 455 - 460. The Hague: Martinus Nijhoff Publishers.

    Google Scholar 

  8. O’Donnell M, Mimbs JW, Sobel BE, Miller J (1979) Ultrasonic attenuation in normal and ischemic myocardium, in: Linzer M (ed), Ultrasonic Tissue Characterization II, pp 63–71. Washington DC: NBS Spec Publ 525, US Government Printing Office.

    Google Scholar 

  9. Johnson SA, Greenleaf JF, Samayoa WF, Duck FA, Sjostrand JD (1975) Reconstruction of three-dimensional velocity fields and other parameters by acoustic ray tracing. IEEE Ultrasonics Symp Proc 75CHP994-4SU: 46.

    Google Scholar 

  10. Mol CR (1981) Ultrasound velocity tomography and dynamic cardiac geometry, (thesis, Utrecht).

    Google Scholar 

  11. Thomas III LJ, Wickline SA, Perez JE, Sobel BE, Miller JG (1986) A real-time integrated backscatter measurement system for quantitative cardiac tissue characterization. IEE Trans Ultrasonics UFFC—33—1: 27–32.

    Google Scholar 

  12. Vered Z, Barzilai B, Mohr GA, Thomas III LJ, Genton R, Sobel BE, Shoup TA, Melton HE, Miller JG, Perez JE (1987) Quantitative ultrasonic tissue characterization with realtime integrated backscatter imaging in normal human subjects and in patients with dilated cardiomyopathy. Circulation 76: 1067–1073.

    Article  PubMed  CAS  Google Scholar 

  13. Miller JG, Perez JE, Sobel BE (1985) Ultrasonic characterization of myocardium. Prog Cardiovasc Dis 28: 85–110.

    Article  PubMed  CAS  Google Scholar 

  14. Chandraratna PAN, Jones JP, Leeman S, Tak T, Rahimroola SH (1988) Echocardiography 5: 183–198.

    Google Scholar 

  15. Perez JE, Miller JG, Barzilai B, Wickline S, Mohr GA, Wear K, Vered Z, Sobel BE (1988) Progress in quantitative ultrasonic characterization of myocardium: From the laboratory to the bedside. J Am Soc Echocardiography: 294–305.

    Google Scholar 

  16. O’Donnell M, Mimbs JW, Miller JG (1981) The relationship between collagen and ultrasonic backscatter in myocardial tissue. J Acoust Soc Am 69: 580–588.

    Article  PubMed  Google Scholar 

  17. Mimbs JW, Bauwens D, Cohen RD, O’Donnell M, Miller JG, Sobel BE (1981) Effects of myocardial ischemia on quantitative ultrasonic backscatter and identification of responsible determinants. Circ Res 49: 89–96.

    PubMed  CAS  Google Scholar 

  18. Mimbs JW, O’Donnell M, Bauwens D, Miller JG, Sobel BE (1980) The dependence of ultrasonic attenuation and backscatter on collagen content in dog and rabbit hearts. Circ Res 47: 49–58.

    PubMed  CAS  Google Scholar 

  19. Cohen RD, Mottley JG, Miller JG, Kurnik PB, Sobel BE (1982) Detection of ischemic myocardium in vivo through the chest wall by quantitative ultrasonic tissue characterization. Am J Cardiol 50: 838–843.

    Article  PubMed  CAS  Google Scholar 

  20. Miller JG, Pérez JE, Mottley JG, Madaras EI, Johnston PH, Blodgett ED, Thomas LJ, Sobel BE (1983) Myocardial tissue characterization: An approach based on quantitative backscatter and attenuation. Proc IEEE Ultrasonics Symp 83 CH 1947–1: 782–793.

    Google Scholar 

  21. Lancée CT, Mastik F, Rijsterborgh H, Bom N (1988) Myocardial backscatter analysis in animal experiments. Ultrasonics 26: 155–163.

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Kluwer Academic Publishers

About this chapter

Cite this chapter

Bom, N., Rijsterborgh, H., Lancée, C.T., Roelandt, J.R.T.C. (1991). Possibilities of ultrasonic tissue identification in the heart. In: Iliceto, S., Rizzon, P., Roelandt, J.R.T.C. (eds) Ultrasound in Coronary Artery Disease. Developments in Cardiovascular Medicine, vol 113. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0611-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0611-2_21

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6762-1

  • Online ISBN: 978-94-009-0611-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics