Skip to main content

Free radicals and heavy metal tolerance

  • Chapter

Part of the book series: Tasks for vegetation science ((TAVS,volume 22))

Abstract

There are many possible ways in which heavy metals can affect the generation and the metabolization of cellular radical species. Due to a lack of in vivo studies, it is difficult to assess the significance of oxidative stress in metal toxicity in higher plants. Except for copper toxicity, which is associated with peroxidation of the root cell membranes, there are no indications that metal toxicity would primarily rely on a disturbance of the cellular radical balance. It is uncertain whether the evolution of metal tolerance involves changes in the capacity of the cellular defence against radicals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baszýnski, T., Tukendorf, A., Ruszkowska, M., Skórzýynska & Maksymiec, W., 1988. Characteristics of the photosynthetic apparatus of copper non-tolerant spinach exposed to excess copper. J. Plant Physiol. 132: 708–713.

    Google Scholar 

  • Braughler, J. M., Duncan, L. A. & Chase, R. L., 1986. The involvement of iron in lipid peroxidation. J. Biol. Chem. 261: 10282–10289.

    PubMed  CAS  Google Scholar 

  • Cardinaels, C, Put, C, Van Assche, F. & Clijsters, H., 1984. The superoxide dismutase as a biochemical indicator, discriminating between zinc and cadmium toxicity. Arch. Int. Physiol. Biochim. 92: 2–3.

    Article  Google Scholar 

  • Chan, P. C, Peller, O. G. & Kesner, L., 1982. Copper (II)-catalyzed lipid peroxidation in liposomes and erythrocyte membranes. Lipids 17: 331–337.

    Article  PubMed  CAS  Google Scholar 

  • Czapski, G., Aronovitch, J., Samuni, A. & Chevion, M., 1983. The sensitization of the toxicity of superoxide and vitamin C by copper and iron: a site specific mechanism. In: G. Cohen & R.A. Greenwald (eds.). Oxy radicals and their scavenger systems (Vol. 1). Elsevier Biomedical, Amsterdam pp. 111–115.

    Google Scholar 

  • De Vos, C. H. R., Schat, H., Vooijs, R. & Ernst, W. H. O., 1989. Copper-induced damage to the permeability barrier in roots of Silene cucubalus. J. Plant Physiol. 135: 164–169.

    Google Scholar 

  • Del Rio, L. A., Sandalio, L. M., Yánez, J. & Gómez, M., 1985. Induction of manganese-containing superoxide dismutase in leaves of Pisum sativum L. by high nutrient levels of zinc and manganese. J. Inorg. Biochem. 24: 25–34.

    Article  Google Scholar 

  • DiMonte, D., Ross, D., Bellomo, G., Eklöw, L. & Orrenius, S., 1984. Alterations in intracellular thiol homeostasis during the metabolism of menadione by isolated rat hepatocytes. Arch. Biochem. Biophys. 235: 334–342.

    Article  CAS  Google Scholar 

  • Ding, A-H. & Chan, P. C, 1984. Singlet oxygen in copper-catalyzed lipid peroxidation in erythrocyte membranes. Lipids 19: 278–284.

    Article  PubMed  CAS  Google Scholar 

  • Ernst, W. H. O., 1974. Schwermetallvegetation der Erde. Fischer, Stuttgart.

    Google Scholar 

  • Girotti, A. W., 1985. Mechanisms of lipid peroxidation. J. Free Rad. Biol. Med. 1: 87–95.

    Article  CAS  Google Scholar 

  • Gora, L., Van Assche, F. & Clijsters, H., 1985. Effects of toxic copper treatment on chloroplast properties of Phaseolus vulgaris. Arch. Int. Physiol. Biochim. 93: 8.

    Google Scholar 

  • Graham, R. D., 1981. Absorption of copper by plant roots. In: J.F. Loneragan, A.D. Robson, R.D. Graham (eds.). Copper in soils and plants. Academic Press, Sydney New York London pp. 141–163.

    Google Scholar 

  • Haenen, G. R. M. M. & Bast, A., 1983. Protection against lipid peroxidation by a microsomal glutathione-dependent labile factor. FEBS Lett. 159: 24–28.

    Article  PubMed  CAS  Google Scholar 

  • Halliwell, B., 1974. Superoxide dismutase, catalase and glutathione peroxidase: solutions to the problems of living with oxygen. New Phytol. 73: 1075–1086.

    Article  CAS  Google Scholar 

  • Halliwell, B. & Gutteridge, J. M., 1985. Free radicals in biology and medicine. Clarendon Press, London.

    Google Scholar 

  • Hendry, G. A. F. & Brocklebank, K. J., 1985. Iron-induced oxygen radical metabolism in waterlogged plants. New Phytol. 101: 199–206.

    Article  CAS  Google Scholar 

  • Kumar, K. S., Rowse, C. & Hochstein, P., 1978. Copper-induced generation of superoxide in human red cell membrane. Biochem. Biophys. Res. Comm. 83: 587–592.

    Article  PubMed  CAS  Google Scholar 

  • Larson, R. A., 1988. The antioxidants of higher plants. Phytochem. 27: 969–978.

    Article  CAS  Google Scholar 

  • Lee, E. H. & Bennett, J. H., 1982. Superoxide dismutase. A possible protective enzyme against ozon injury in snap beans (Phaseolus vulgaris L.). Plant Physiol. 69: 1444–1449.

    Article  PubMed  CAS  Google Scholar 

  • Lee, F. J. & Hassan, H. M., 1985. Biosynthesis of superoxide dismutase in Saccharomyces cerevisiae: effects of paraquat and copper. J. Free Rad. Biol. Med. 1: 319–325.

    Article  CAS  Google Scholar 

  • Ljutakova, S. G., Russanov, E. M. & Liochev, S. I., 1984. Copper increases superoxide dismutase activity in rat liver. Arch. Biochem. Biophys. 235: 636–643.

    CAS  Google Scholar 

  • Lolkema, P. C, 1985. Copper resistance in higher plants. Thesis, Free University Press, Amsterdam.

    Google Scholar 

  • Lolkema, P. C. & Vooijs, R., 1986. Copper tolerance in Silene cucubalus. Subcellular distribution of copper and its effect on chloroplast and plastocyanin synthesis. Planta (Berl.) 167: 30–36.

    Article  CAS  Google Scholar 

  • Mehlhorn, H., Seufert, G., Schmidt, A. & Kunert, K. J., 1986. Effect of SO2 and O3 on production of antioxidants in conifers. Plant Physiol. 82: 336–338.

    Article  PubMed  CAS  Google Scholar 

  • Minotti, G. & Aust, S. D., 1987. An investigation into the mechanism of citrate-Fe2+-dependent lipid peroxidation. J. Free Rad. Biol. Med. 3: 379–387.

    Article  CAS  Google Scholar 

  • Naiki, N., 1980 Role of superoxide dismutase in a copper-resistant strain of yeast. Plant Cell Physiol. 21: 775–783.

    CAS  Google Scholar 

  • Palma, J. M., Gómez, M., Yánez, J. & Del Rio, L. A., 1987. Increased levels of peroxisomal active oxygen-related enzymes in copper-tolerant pea plants. Plant Physiol. 85: 570–574.

    Article  PubMed  CAS  Google Scholar 

  • Pauls, K. P. & Thompson, J. E., 1982. Effects of cytokinins and antioxidants on the susceptability of membranes to ozone damage. Plant Cell Physiol. 23: 821–832.

    CAS  Google Scholar 

  • Permual, A. & Beattie, J. M., 1965. Effect of different levels of copper on the activity of certain enzymes in leaves of apple. Am. Soc. Hort. Sc. 88: 41–47.

    Google Scholar 

  • Rao, S. & Venkateswerlu, G., 1986. Glutamine metabolism in Neurospora crassa under conditions of copper toxicity. J. Exp. Bot. 37: 947–955.

    Article  CAS  Google Scholar 

  • Ribanov, S., Benor, L., Benchov, I., Monovich, O. & Markova, V., 1982. Hemolysis and peroxidation in heavy metal-treated erythrocytes; GSH content and activities of some protecting enzymes. Experimentia 38: 1354–1355.

    Article  Google Scholar 

  • Rowley, D. A. & Halliwell, B., 1983. Superoxide-dependent and ascorbate-dependent formation of hydroxyl radicals in the presence of copper-salts: a physiologically significant reaction? Arch. Biochem. Biophys. 225: 279–284.

    Article  PubMed  CAS  Google Scholar 

  • Sandmann, G. & Böger, P., 1980a. Copper-mediated lipid peroxidation processes in photosynthetic membranes. Plant Physiol. 66: 797–800.

    Article  CAS  Google Scholar 

  • Sandmann, G. & Böger, P., 1980b. Copper deficiency and toxicity in Scenedesmus. Z. Pflanzenphysiol. 98: 53–59.

    CAS  Google Scholar 

  • Schmidt, A. & Kunert, K. J., 1986. Lipid peroxidation in higher plants. The role of glutathione reductase. Plant Physiol. 82: 700–702.

    Article  PubMed  CAS  Google Scholar 

  • Shioi, Y., Tamai, H. & Sasa, T, 1978. Effects of copper on photosynthetic electron transport systems in spinach chloro-plasts. Plant Cell Physiol. 19: 203–209.

    CAS  Google Scholar 

  • Thomas, C. E., Morehouse, L. A. & Aust, S. D., 1985. Ferritin and superoxide-dependent lipid peroxidation. J. Biol. Chem. 260: 3275–3280.

    PubMed  CAS  Google Scholar 

  • Thornalley, P.J. & Vasák, M., 1985. Possible role for metallothionein in protection against radiation-induced oxidative stress-kinetics and mechanisms of its reaction with superoxide and hydroxyl radicals. Biochim. Biophys. Acta 827: 36–44.

    Article  PubMed  CAS  Google Scholar 

  • Verkleij, J. A. C. & Schat, H., 1990. Mechanisms of metal tolerance in higher plants. In: A.J. Shaw (ed.) Heavy metal tolerance in plants: evolutionary aspects. CRC Press Inc., Boca Raton, Florida pp. 179–193.

    Google Scholar 

  • Woolhouse, H. W., 1983. Toxicity and tolerance in the responses of plants to metals. In: A. Läuchli & R.L. Bieleski (eds.) Encyclopedia of plant physiology (Vol. 12c). Springer Verlag, Berlin pp. 245–300.

    Google Scholar 

  • Younes, M. & Siegers, C. P., 1981. Mechanistic aspects of enhanced lipid peroxidation following glutathione depletion in vivo. Chem.-Biol. Interactions 34: 257–266.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Kluwer Academic Publishers

About this chapter

Cite this chapter

De Vos, C.H.R., Schat, H. (1991). Free radicals and heavy metal tolerance. In: Rozema, J., Verkleij, J.A.C. (eds) Ecological responses to environmental stresses. Tasks for vegetation science, vol 22. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0599-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0599-3_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6757-7

  • Online ISBN: 978-94-009-0599-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics