Skip to main content

The genetics and ecology of variation in secondary plant substances

  • Chapter

Part of the book series: Tasks for vegetation science ((TAVS,volume 22))

Abstract

There is an enormous amount of variation in secondary plant metabolites. The variation, both quantitative and qualitative, can be exploited to study the genetics and the ecological functions of these substances. The present review discusses some selected groups of secondary metabolites, viz. those that have been studied both from the genetical and the ecological point of view. Variation in secondary metabolism may be caused by genetical differences or by the environment. The control and expression of two groups of secondary plant substances: cyanoglucosids and flavonoids are discussed as examples. The different functions of secondary metabolites in the ecology of the plant can be grouped as follows: Functions related to the primary metabolism, functions related to the abiotic environment and functions related to the biotic environment. One secondary metabolite can have different functions, belonging to different function groups.

One function of secondary metabolites that has received considerable attention in the past is protection against herbivores. There is certainly evidence that some secondary metabolites give protection against some herbivores. However, only a few combinations of plants and herbivores have been studied in detail. Less than a score of these studies have made use of variation in secondary plant substances with a known genetical base. Even if we can prove the defensive function of a particular secondary metabolite, this does not, in itself, constitute a proof of adaptedness. Only if and so far as the benefit of chemical defense exceeds the cost can we speak of adaptedness. A review of the literature on costs and benefits of chemical defense shows that both costs and benefits have been defined too narrowly in the past. Discussion of the ecological functions of cyanogenesis in white clover shows that both costs and benefits of cyanogenesis can be large, but that these effects are prominent in different stages of the life cycle of the plant. So in order to study the cost and benefit of a chemical defense system, the life history of the plant has to be taken into account.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allard, R. W., 1988. Genetic changes associated with the evolution of adaptedness in cultivated plants and their wild progenitors. J. Hered. 79: 225–238.

    PubMed  CAS  Google Scholar 

  • Belotti, A. C. & Schoonhoven, L. M., 1978. Mite and insect pests of cassava. Ann. Rev. Entomol. 23: 39–67.

    Article  Google Scholar 

  • Berenbaum, M. R., Zangerl, A. R. & Nitao, J. K., 1986. Constraints on chemical coevolution: Wild parsnips and the parsnip webworm. Evolution 40: 1215–1228.

    Article  CAS  Google Scholar 

  • Berg, P. v.d. & Matzinger, D. F., 1970. Genetic diversity and heterosis in Nicotiana III Crosses among tobacco introductions and flue cured varieties. Crop Sci. 10: 437–440.

    Article  Google Scholar 

  • Bleiler, J. A., Rosenthal, G. A. & Janzen, D. H., 1988. Biochemical ecology of canavanine-eating seed predators. Ecology 69: 427–434.

    Article  CAS  Google Scholar 

  • Bove, C., Conn, E. E., 1961. Metabolism of aromatic compounds in higher plants II Purification and properties of the oxynitrililase of Sorghum vulgare. J. Biol. Chem. 236: 207–236.

    CAS  Google Scholar 

  • Bruyn, G. H. de, 1971. Étude du caractère cyogénique du manioc (Manihot esculenta Crantz). Thesis Landbouwhoge-school Wageningen.

    Google Scholar 

  • Cates, R. G., 1986. The interface between slugs and wild ginger: Some evolutionary aspects. Ecology 56: 391–400.

    Article  Google Scholar 

  • Coley, P.D., 1986. Costs and benefits of defense by tannins in a neotropical tree. Oecologia 70: 238–241.

    Article  Google Scholar 

  • Collinge, D. B. & Hughes, M. A., 1982. In vitro characterisation of the Ac locus in white clover. Arch. Biochem. Bio-phys. 218: 38–45.

    Article  CAS  Google Scholar 

  • Conn, E. E., 1980. Cyanogenic compounds. Ann. Rev. Plant. Physiol. 31: 433–451.

    Article  CAS  Google Scholar 

  • Dawson, C. D. R., 1946. Tetrasomic inheritance in Lotus corniculatus. Journal of Heredity 42: 49–72.

    Google Scholar 

  • Dawson, R. F., Christmann, D. R., Solt, M. L. & Wolf, A. P., 1960. The biosynthesis of nicotin from nicotinic acid. Chemical and radiochemical yields. Arch. Biochem. Biophys. 91: 144–150.

    CAS  Google Scholar 

  • Dickenmann, R., 1982. Cyanogenesis in Ranunculus montanus s.1. from the Swiss Alps Ber. Geobot. Inst. E.T.H. 49: 56–75.

    Google Scholar 

  • Dirzo, R., Harper, J. L., 1982. Experimental studies on slug-plant interactions IV The performance of cyanogenic and acyanogenic morphs of Trifolium repens in the field. Journ. Ecol. 70: 119–138.

    Article  Google Scholar 

  • Dussourd, D. E., Ubik, K., Harvis, C. Resch, J., Meinwald, J. & Eisner, T, 1988. Biparental endowment of eggs with acquired plant alkaloid in the moth Utetheisa ornatrix. Proc. Natl. Acad. Sci. USA 85: 5992–5996.

    Article  PubMed  CAS  Google Scholar 

  • Ellis, W. M., Keymer, R. J. & Jones, D. A., 1977. The effect of temperature on the polymorphism of cyanogenesis in Lotus corniculatus. Heredity 38: 339–347.

    Article  Google Scholar 

  • Ernst, W. H. O., 1987. Scarcity of flower color polymorphism in field populations oí Digitalis purpurea L. Flora 179: 231–239.

    Google Scholar 

  • Ford, E. B., 1964. Ecological genetics London, New York.

    Google Scholar 

  • Foulds, W. & Grime, J. P., 1972. The response of cyanogenic and acyanogenic phenotypes of Trifolium repens to soil moisture supply. Heredity 28: 181–187.

    Article  Google Scholar 

  • Hanover, J. W., 1966. Genetics of terpenes. I Gene control of monoterpene levels in Pinus montícola. Heredity 21: 73–84.

    Article  CAS  Google Scholar 

  • Harborne, J. R., Mabry, T. J. & Mabry, H., 1975. The flavonoids. Chapman and Hall, London.

    Google Scholar 

  • Harborne, J. B., 1976. Functions of flavonoids in plants. In: T.W. Goodwin (ed.) Chemistry and biochemistry of plant pigments. 2nd ed. Vol. 1. Academic press London pp 736–776.

    Google Scholar 

  • Harborne, J. B., 1980. Plant Phenolics. In: E.A. Bell & B.V. Charlwood (eds.) Encyclopedia of plant physiology new series vol. 8: Secondary plant products. Springer Berlin pp. 329–395.

    Google Scholar 

  • Hughes, M. A. & Stirling, J. D., 1984. A study of dominance at the locus controlling cyanoglucoside production in Trifolium repens. Euphytica 3: 477–483.

    Google Scholar 

  • Hughes, M. A., Stirling, J. D. & Collinge, D. B., 1982. The inheritance of cyanoglucoside content in Trifolium repens. Biochem. Genet. 22: 139–151.

    Article  Google Scholar 

  • Johnsson, L. M. V. & Schram, A. W., 1987. Regulation of flavonoid biosynthesis in higher plants, in particular Petunia hybrida. Plant Physiol. (Life Sci. Adv.) 6: 9–21.

    Google Scholar 

  • Jones, D. A., 1970. On the polymorphism of cyanogenesis in Lotus corniculatus III Some aspects of selection. Heredity 25: 633–641.

    Article  Google Scholar 

  • Jones, D. A., 1978. Characteristics of cyanogenic and acyanogenic white clover plants. Soil and Crop Sci. Soc. of Fla. Proc. 38.

    Google Scholar 

  • Jones, D. A., 1972. Cyanogenic glucosides and their function. In: Phytochemical ecology (ed.) J.B. Harborne Acad. Press.

    Google Scholar 

  • Kakes, P. Properties and functions of the cyanogenic system in Angiosperms. Euphytica 48: 25–43.

    Google Scholar 

  • Kakes, P., 1989. An analysis of the costs and benefits of the cyanogenic system in Trifolium repens. Theor. Appl. Genet. 77: 111–118.

    Article  Google Scholar 

  • Kossel, A., 1891. Ueber die chemische Zusammensetzung der Zelle. Archiv für Physiologie 14: 181–192.

    Google Scholar 

  • Nahrstedt, A., 1985. Cyanogenic compounds as protecting agents for organisms. Pl. Syst. Ecol. 150: 35–47.

    Article  CAS  Google Scholar 

  • Nass, H. G., 1972. Cyanogenesis: Its inheritance in Sorghum bicolor, Sorghum sudanense, Lotus and Trifolium repens — A Review. Crop Sci. 12: 503–506.

    Article  Google Scholar 

  • Nayar, A. & Fraenkel, G. L., 1963. The chemical basis of the host selection of the mexican bean beetle Epilachna varivestis. Ann. Ent. Soc. Am. 56: 174–178.

    CAS  Google Scholar 

  • Parsons, J. & Rothschild, M., 1964. Rhodanese in the larva and pupa of the common blue butterfly (Polyommatus icarus (Rott.)), Lepidoptera. Ent. Gaz. 15: 58–59.

    Google Scholar 

  • Robiquet & Boutran-Charlard. 1830. Ann. de Chim. 44: 352.

    Google Scholar 

  • Rosenthal, G. A., 1983. The adaptation of a beetle to a poisonous plant. Scientific American 249: 164–171.

    Article  CAS  Google Scholar 

  • Rosenthal, G. A., 1986. Biochemical insight into insecticidal properties of L-canavanine, a higher plant allelochemical. J. Chem. Ecol. 12: 1145–1156.

    Article  CAS  Google Scholar 

  • Rothschild, M., Alborn, H., Stenhagen, G. & Schoonhoven, L. M., 1988. A strophantidin glycoside in Siberian wallflower: A contact deterrent for the large white butterfly. Phytochemistry 27: 101–108.

    Article  CAS  Google Scholar 

  • Simms, E.L., Rausher, M. D., 1987. Costs and benefits of plant resistance to herbivory. Am. Nat. 130: 570–581.

    Article  Google Scholar 

  • Smit, J. D. G., Urbanska, K. M., 1986. Rhodanese activity in Lotus corniculatus s.1. J. Nat. Hist. 20: 1467–1476.

    Article  Google Scholar 

  • Stahl, E., 1888. Pflanzen und Schnecken. Jena Z. Naturwiss. 22: 557–684.

    Google Scholar 

  • Swain, T., 1977. Secondary compounds as protective agents. Ann. Rev. Plant Physiol. 28: 499–501.

    Article  Google Scholar 

  • Till, J., 1987. Variability of expression in white clover (Trifolium repens). Heredity 59: 265–271.

    Article  Google Scholar 

  • Tjon Sie Fat, L. A., 1979. Contribution to the knowledge of cyanogenesis in Ranunculaceae. Proc. Koninkl. Nederl. Acad. Wetensch. 82C: 197–209.

    Google Scholar 

  • Tollstein, L. & Bergstrom, G., 1988. Headspace volatiles of whole plants and macerated plant parts of Brassica and Sinapis. Phytochemistry 27: 2073–2077.

    Article  Google Scholar 

  • Underbill, E. W., 1980. Glucosinolates. In: E.A. Bell & B.V. Charlwood (eds.) Encyclopedia of plant physiology new series vol. 8: Secondary plant products. Springer Berlin Heidelberg, New York. pp. 329–395.

    Google Scholar 

  • Urbanska, K., 1982. Polymorphism of cyanogenesis in Lotus alpinus from Switzerland. Berichte des Geobotanischen Institutes der Eidg. Techn. Hochschule. Stiftung Rubel 49: 35–56.

    Google Scholar 

  • Waal, R. de, 1942. Het cyanophore karakter van witte klaver, Trifolium repens L. Thesis Landbouwhogeschool, Wageningen, The Netherlands.

    Google Scholar 

  • Wiering, H. & Vlaming, P. de, 1984. In: K.C. Sink (ed.) Monographs on Theoretical and applied genetics 9. Springer-verlag Berlin Heidelberg, New York. pp. 49–67.

    Google Scholar 

  • Witthohn, K. & Naumann, C. M., 1987. Cyanogenesis, a general phenomenon in the lepidoptera? Journal of Chemical Ecology 13: 1789–1809.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Kluwer Academic Publishers

About this chapter

Cite this chapter

Kakes, P. (1991). The genetics and ecology of variation in secondary plant substances. In: Rozema, J., Verkleij, J.A.C. (eds) Ecological responses to environmental stresses. Tasks for vegetation science, vol 22. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0599-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0599-3_21

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6757-7

  • Online ISBN: 978-94-009-0599-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics