Skip to main content

Heavy metal resistance in higher plants: biochemical and genetic aspects

  • Chapter
Ecological responses to environmental stresses

Part of the book series: Tasks for vegetation science ((TAVS,volume 22))

Abstract

Copper, zinc, cadmium and aluminium resistance in higher plants is discussed with regard to genetic and biochemical aspects. In general, metal resistance is genetically determined and metal-specific. Due to the lack of a proper measure of metal resistance, it is still not known whether the resistance is controlled by major genes or whether it is polygenic. However, by applying a more accurate method evidence is brought forward that copper resistance is controlled by a major gene.

Resistance in higher plants is mainly based on tolerance, which implies uptake of heavy metals and the ability to “tolerate” excess internal metal concentrations. A complete exclusion of heavy metals is as yet not demonstrated.

Upon exposure to toxic concentrations of cadmium, zinc and copper metal tolerant and non tolerant plants synthesize metal-lothiopeptides or phytochelatins. However, there is no conclusive evidence that these compounds play an essential role in the tolerance mechanism. Other potential chelators such as organic acids could be of importance, but evidence for their role is lacking. Compartmentation of excess metals in subcellular bodies (vacuoles) or organs (leaves) seems an effective strategy to avoid toxic effects. For copper tolerance structural modifications at the level of the plasmamembrane could be of significance. Results of biochemical studies, carried out in cell suspension lines, have to be confirmed with studies at the cellular and higher integration levels in intact plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Antonovics, J., Bradshaw, A. D. & Turner, R. G., 1971. Heavy metal tolerance in plants. Adv. Ecol. Res. 7: 1–85.

    Article  Google Scholar 

  • Baker, A. J. M., 1978. Metal tolerance. New Phytol. 80: 635–642.

    Article  CAS  Google Scholar 

  • Baker, A. J. M., Grant, C. J., Martin, M. H., Shaw, S. C. & Whitebrook, J., 1986. Induction and loss of cadmium tolerance in Holcus lanatus L. and other grasses. New Phytol. 102: 575–587.

    Article  CAS  Google Scholar 

  • Bradshaw, A. D., McNeilly, T. & Gregory, R. P. G., 1965. Industrialization, evolution and the development of heavy metal tolerance in plants, pp. 327–344. In: G.T. Goodman, R.W. Edwards & J.M. Lambert (eds.), Ecology and the Industrial Society, The British Ecol. Soc. Sym. No 5. Blackwell, Oxford.

    Google Scholar 

  • Bröker, W., 1963. Genetisch-physiologische Untersuchungen über die zinkverträglichkeit von Silene inflata Sm. Flora (Jena) 153: 122–156.

    Google Scholar 

  • Brooks, R. R., Malaisse, F. & Empain, A., 1985. The heavy metal-tolerant flora of South Central Africa. A. A. Balkema, Rotterdam/Boston. Coughtrey, P. J. & Martin, M. H., 1978. Cadmium uptake and distribution in tolerant and non-tolerant populations of Holcus lanatus grown in solution culture. Oikos 30: 555–560.

    Google Scholar 

  • Cox, R. M., 1986. Contamination and effects of cadmium in native plants, pp. 101–109. In: H. Mislin & O. Ravera (eds.), Cadmium in the Environment, Experientia Supplementum Vol 50, Birkhauser Verlag, Basel.

    Google Scholar 

  • Cox, R. M. & Hutchinson, T. C, 1980. Multiple metal tolerances in the grass Deschampsia caespitosa (L.) Beauv. from the Sudbury smelting area. New Phytol. 84: 631–647.

    Article  CAS  Google Scholar 

  • De Neeling, A. J. & Ernst, W. H. O., 1986. Manganese and aluminium tolerance of Senecio sylvaticus L. Acta Oecol./Oecol. Plant. 7: 43–56.

    Google Scholar 

  • De Vos, C. H. R., Schat, H., De Waal, M. A. M., Vooys, R. & Ernst, W. H. O., 1991. Increased resistance of the root cell plasmalemma to Cu2+-induced permeability damage in copper tolerant Silene cucubalus. Physiol. Plant, (submitted).

    Google Scholar 

  • De Vos, C. H. R., Schat, H., Vooijs, R. & Ernst, W. H. O., 1989. Copper-induced damage to the permeability barrier in roots of Silene cucubalus. J. Plant Physiol., 135: 164–169.

    Google Scholar 

  • Delhaize, E., Jackson, P. J., Lujan, L. D. & Robinson, N. J., 1989. Poly(γ-glutamylcysteinyl)glycine synthesis in Datura innoxia and binding with cadmium. Plant Physiol. 89: 700–706.

    Article  PubMed  CAS  Google Scholar 

  • Ernst, W., 1972. Schwermetallresistenz und Mineralstoffhaushalt. Westdeutscher Verlag: Opladen.

    Google Scholar 

  • Ernst, W., 1974. Schwermetallvegetation der Erde. Gustav Fischer Verlag: Stuttgart.

    Google Scholar 

  • Ernst, W. H. O., 1975. Physiology of heavy metal resistance in plants, pp. 121–136. In: T.C. Hutchinson, S. Epstein, A.L. Page, J. Van Loon & T. Davey (eds.), Proc. Int. Conf. on Heavy Metals in the Environment. CEP Consultants, Toronto.

    Google Scholar 

  • Ernst, W. H. O., 1980. Biochemical aspects of cadmium in plants, pp. 639–653. In: J.O. Nriagu (ed.), Cadmium in the Environment. J. Wiley and Sons, New York.

    Google Scholar 

  • Ernst, W. H. O., 1982. Schwermetallpflanzen, pp. 472–505. In: H. Kinzel (ed.), Pflanzenökologie und Mineralstoffwechsel, Eugen Ulmer Verlag, Stuttgart.

    Google Scholar 

  • Ernst, W. H. O., 1983. Ökologische Anpassungsstrategien an Bodenfaktoren. Ber. Deutsch. Bot. Ges., 96: 49–71.

    CAS  Google Scholar 

  • Ernst, W. H. O., 1985. Schwermetallimmisionen-ökophysio-logische und populations-genetische Aspekte. Düsseldorfer Geobotanische Kolloquien, 2: 43–57.

    Google Scholar 

  • Ernst, W. & Weinert, H., 1972. Lokalisation von Zink in den Blättern von Silene cucubalus Wib. Z. Pflanzenphysiol. 66: 258–264.

    Google Scholar 

  • Ernst, W. H. O., Schat, H. & Verkleij, J. A. C, 1990. Evolutionary biology of metal resistance in Silene vulgaris. Evol. Trends Plants 4: 45–51.

    Google Scholar 

  • Foy, C. D., 1974. Effects of aluminium on plant growth. In: E.W. Carson (ed.) The plant root and its environment, Charlotte University Press, Charlotterville 601.

    Google Scholar 

  • Foy, C.D., Chaney, R. L., & White, M. C., 1978. The physiology of metal toxicity in plants. Ann. Rev. Plant Physiol. 28: 511–566.

    Article  Google Scholar 

  • Gartside, D. W. & McNeilly, T., 1974. The potential for evolution of heavy metal tolerance in plants. II. Copper tolerance in normal populations of different plant species. Heredity 32: 335–348.

    Article  Google Scholar 

  • Gekeler, W., Grill, E., Winnacker, E.-L. & Zenk, M. H., 1988. Algae sequester heavy metals via synthesis of phytochelatin complexes. Archives of Microbiology 150: 197–202.

    Article  CAS  Google Scholar 

  • Gregory, R. P. G. & Bradshaw, A. D., 1965. Heavy metal tolerance in populations of Agrostis tenuis Sibth. and other grasses. New Phytol. 64: 131–143.

    Article  CAS  Google Scholar 

  • Gries, B., 1966. Zellphysiologische Untersuchungen über die Zinkresistenz bei Galmeiökotypen und Normalformen von Silene cucubalus. Flora, B156: 271–290.

    Google Scholar 

  • Grill, E., Winnacker, E.-L. & Zenk, H. H., 1987. Phytochelatins, a class of heavy-metal binding peptides from plants, are functionally analogous to metallothioneins. Proceed. Nat. Acad. Sc. USA 84: 439–443.

    Article  CAS  Google Scholar 

  • Grill, E., Winnacker, E. L. & Zenk, M. H., 1988. Occurrence of heavy metal binding phytochelatins in plants growing in a mining refuse area. Experientia 44: 539–540.

    Article  CAS  Google Scholar 

  • Harmens, H., Verkleij, J. A. C, Koevoets, P. & Ernst, W. H. O., 1989. The role of organic acids and phytochelatins in the mechanism of zinc tolerance in Silene vulgaris (= Silene cucubalus). pp. 178–181. In: J.P. Vernet (ed.) Heavy Metals in the Environment, Geneva 1989, Vol. 2. CEP Consultants: Edinburgh.

    Google Scholar 

  • Hecht-Buchholz, Ch. & Schuster, J., 1987. Responses of Altolerant Dayont and Al-sensitive Kearney barley cultivars to calcium and magnesium during Al-stress. Plant and Soil 99: 47–61.

    Article  CAS  Google Scholar 

  • Jackson, P. J., Unkefer, C. J., Doolen, J. A., Watt, K. & Robinson, N. J., 1987. Poly(γ-glutamylcysteinyl)glycine; its role in cadmium resistance in plant cells. Proceed. Nat. Acad. Sci. USA 84: 6619–6623.

    Article  CAS  Google Scholar 

  • Krotz, R. M., Evangelou, B. P. & Wagner, G. J., 1989. Relationships between cadmium, zinc, Cd-peptide, and organic acid in tobacco suspension cells. Plant Physiol. 91: 780–787.

    Article  PubMed  CAS  Google Scholar 

  • Levitt, J., 1980. Responses of Plants to Environmental Stresses. Vol. 1. Academic Press: New York.

    Google Scholar 

  • Lolkema, P.C., 1985. Copper resistance in higher plants. Thesis Vrije Universiteit, Amsterdam.

    Google Scholar 

  • Lolkema, P. C, Donker, M. H., Schouten, A. J. & Ernst, W. H. O., 1984. The possible role of metallothioneins in copper tolerance of Silene cucubalus. Planta 162: 174–179.

    Article  CAS  Google Scholar 

  • Lolkema, P. C. & Vooijs, R., 1986. Copper tolerance in Silene cucubalus. Subcellular distribution of copper and its effects on chloroplasts and plastocyanin synthesis. Planta 167: 30–36.

    Article  CAS  Google Scholar 

  • MacNair, R. M., 1983. The genetic control of copper tolerance in the yellow monkey flower, Mimulus guttatus. Heredity 50: 283–293.

    Article  CAS  Google Scholar 

  • Mathys, W., 1975. Enzymes of heavy-metal resistant and non-resistant populations of Silene cucubalus and their interaction with some heavy metals in vitro and in vivo. Physiol. Plant. 33: 161.

    Article  CAS  Google Scholar 

  • Mathys, W., 1977. The role of malate, oxalate and mustard oil glycosides in the evolution of zinc-resistance in herbage plants. Physiol. Plant., 33: 161–165.

    Article  Google Scholar 

  • Mullins, M., Hardwick, K. & Thurman, D. A., 1985. Heavy metal location by analytical electron microscopy in conventionally fixed and freeze-substituted roots of metal tolerant and non tolerant ecotypes. pp. 43–46. In: Proceed. Inter. Conf. on Heavy Metals in the Environment, Athens. CEP Consultants: Edingburgh.

    Google Scholar 

  • Murasugi, A., Wada, C. & Hayashi, Y., 1983. Occurrence of acid-labile sulfide in cadmium-binding peptide 1 from fission yeast. J. Biochem. 93: 661–664.

    PubMed  CAS  Google Scholar 

  • Nicholls, M. K. & McNeilly, T, 1979. Sensitivity of rooting and tolerance to copper in Agrostis tenuis Sibth. New Phytol. 83: 653–664.

    Article  CAS  Google Scholar 

  • Nussbaum, S., Schmutz, D. & Brunold, C., 1988. Regulation of assimilatory sulfate reduction by cadmium in Zea mays L. Plant Physiol. 88: 1407–1410.

    Article  PubMed  CAS  Google Scholar 

  • Prat, S., 1934. Die Erblichkeit des Resistanz gegen Kupfer. Ber. Dt. Bot. Ges. 52: 65–67.

    CAS  Google Scholar 

  • Quereshi, J. A., Hardwick, K. & Collin, H. A., 1986. Malic acid production in callus cultures of zinc and lead tolerant and non-tolerant Anthoxanthum odoratum. J. Plant. Physiol. 112: 477–479.

    Google Scholar 

  • Rauser, W. E. & Ackerley, C. A., 1987. Localization of cadmium in granules within differentiating and mature root cells. Can. J. Bot. 65: 643–646.

    Article  CAS  Google Scholar 

  • Reese, R. N. & Wagner, G. J., 1987. Effects of buthionine sulfoximine on Cd-binding peptide levels in suspension-cultured cells treated with Cd, Zn or Cu. Plant Physiol. 84: 574–578.

    Article  PubMed  CAS  Google Scholar 

  • Reese, R. N. & Winge, D. R., 1988. Sulfide stabilization of the cadmium-γ-glutamyl peptide complex of Schizosaccharomy-cespombe. J. Biol. Chem. 114: 12832–12835.

    Google Scholar 

  • Robinson, N. J., 1989. Algal metallothioneins: secondary metabolites and proteins. J. Appl. Phycol. 1: 5–18.

    Article  CAS  Google Scholar 

  • Robinson, N. J. & Jackson, P. J., 1986. “Metallothionein-like” metal complexes in angiosperms; their structure and function. Physiol. Plant. 67: 499–506.

    Article  CAS  Google Scholar 

  • Robinson, N. J. & Thurman, D. A., 1986. Isolation of a copper complex and its rate of appearance in roots of Mimulus guttatus. Planta 169: 192–197.

    Article  CAS  Google Scholar 

  • Schat, H. & Van der Maarel, W. M., 1990. Genetic control of copper tolerance in Silene cucubalus Wib. Funct. Ecol. (in press).

    Google Scholar 

  • Schat, H., 1990. Manuscript in preparation.

    Google Scholar 

  • Scheller, H. V, Huang, B., Hatch, E. & Goldsbrough, P. B., 1987. Phytochelatin synthesis and glutathion levels in response to heavy metals in tomato cells. Plant Physiol. 85: 1031–1035.

    Article  PubMed  CAS  Google Scholar 

  • Schulz, C. L. & Hutchinson, T., 1988. Evidence against a key role for metallothionein-like protein in the copper tolerance mechanism of Deschampsia cespitosa (L.) Beauv. New Phytol. 110: 163–171.

    Article  Google Scholar 

  • Silver, S., Johnseine, P., Whitney, E. L. & Clark, D., 1972. Manganese-resistant mutants of Escherichia coli, physiological and genetical studies. J. Bacteriol. 110: 186–192.

    PubMed  CAS  Google Scholar 

  • Simon, E., 1977. Cadmium tolerance in populations of Agrostis tenuis and Festuca ovina. Nature 265: 328–330.

    Article  CAS  Google Scholar 

  • Steffens, H. V., Hunt, D. F. & Williams, B. G., 1986. Accumulation of non-protein-metal-binding polypeptides (γ-gluta-myl-cysteinyl)n glycine in selected cadmium-resistant tomato cells. J. Biol. Chem. 261: 13879–13882.

    PubMed  CAS  Google Scholar 

  • Symeonides, L., McNeilly, T. & Bradshaw, A. D., 1985. Differential tolerance of three cultivars of Agrostis capillaris L. to cadmium, copper, lead, nickel and zinc. New Phytol. 101: 309–000.

    Article  Google Scholar 

  • Taylor, G. J. & Foy, C. D., 1985. Mechanisms of aluminium tolerance in Triticum aestivum L. (wheat). I. Differential pH induced by winter cultivars in nutrient solutions. Am. J. Bot. 72: 695–701.

    Article  CAS  Google Scholar 

  • Taylor, G. J., 1988. Mechanism of aluminium tolerance in Triticum aestivum (wheat). V. Nitrogen, nutrition, plant-induced pH and tolerance to aluminium; correlation without causality? Can. J. Bot. 66: 694–699.

    Article  CAS  Google Scholar 

  • Thurman, D. & Collins, J. C, 1983. Metal tolerance mechanisms in higher plants — A review, pp. 298–304. In: Proc. Inter. Conf. on Heavy Metals in the Environment, Heidelberg. CEP Consultants: Edinburgh.

    Google Scholar 

  • Turner, R. G. & Marshall, C, 1972. The accumulation of zinc by subcellular fractions of roots of Agrostis tenuis Sibth. in relation to zinc tolerance. New Phytol., 71: 671–676.

    Article  CAS  Google Scholar 

  • Urquhart, C., 1971. Genetics of lead tolerance in Festuca ovina. Heredity 26: 19–33.

    Article  Google Scholar 

  • Van Steveninck, R. F. M., Van Steveninck, M. E., Fernando, D. R., Horst, W. J. & Marshner, H., 1987. Deposition of zinc phytate in globular bodies in roots of Deschampsia caespitosa ecotypes: a detoxification mechanism? J. Plant Physiol. 131: 247–257.

    Google Scholar 

  • Verkleij, J. A. C, Bast-Cramer, W. B. & Levering, H., 1985. Effects of heavy-metal stress on the genetic structure of populations of Silene cucubalus. pp. 355–365. In: J. Haeck & J.W. Woldendorp (eds.) Structure and Functioning of Plant Populations. 2. Phenotypic and Genotypic Variation in Plant Populations. North-Holland Publishing Company: Amsterdam.

    Google Scholar 

  • Verkleij, J. A. C. & Prast, J. E., 1989. Cadmium tolerance and cotolerance in Silene vulgaris (Moench.) Garcke [= S. cucubalus L. Wib.]. New Phytol. 111: 637–645.

    Article  CAS  Google Scholar 

  • Verkleij, J. A. C. & Schat, H., 1990. Mechanisms of metal resistance in higher plants, pp. 179–193. In: J. Shaw (ed.) Evolutionary Aspects of Heavy Metal Tolerance in Plants, CRC Press, New York.

    Google Scholar 

  • Verkleij, J. A. C, De Nobel, W. T. & Nydam, Y. (1990a). Effects of Cd on germination, growth and reproduction in Silene vulgaris (manuscript in preparation).

    Google Scholar 

  • Verkleij, J. A. C, Koevoets, P., Van ’t Riet, J., Van Rossenberg, M. C, Bank, R. & Ernst, W. H. O., 1989. The role of metal-binding compounds in the copper tolerance mechanism of Silene cucubalus. pp. 347–357. In: D. Winge & D. E. Hamer (eds.) Metal Ion Homeostasis: Molecular Biology and Chemistry. Alan R. Liss Inc., New York.

    Google Scholar 

  • Verkleij, J. A. C, Koevoets, P. L. M., Van ’t Riet, J. & Ernst, W. H. O., 1990b. Phytochelatin production in tolerant and non-tolerant Silene vulgaris (manuscript in preparation).

    Google Scholar 

  • Verkleij, J. A. C, Koevoets, P. L. M., Van ’t Riet, J., Bank, R., Nijdam, Y & Ernst, W. H. O., 1990c. Poly(γ-glutamyl-cysteinyl)glycines or phytochelatins and their role in cadmium tolerance of Silene vulgaris. Plant, Cell & Environ, (in press).

    Google Scholar 

  • Wainwright, S. J. & Woolhouse, H. W., 1977. Some physiological aspects of copper and zinc tolerance in Agrostis tenuis Sibth.: Cell elongation and membrane damage. J. Exp. Bot., 25: 1025–1036.

    Google Scholar 

  • Walley, K., Khan, M. S. I. & Bradshaw, A. D., 1974. The potential for evolution of heavy metal tolerance in plants. I. Copper and zinc tolerance in Agrostis tenuis. Heredity, 32: 309–319.

    Article  Google Scholar 

  • Woolhouse, H. W., 1983. Toxicity and tolerance in the responses of plants to metals, pp. 245–289. In: O.L. Lange, P.S. Nobel, C.B. Osmond & H. Ziegler (eds.) Encyclopedia of Plant Physiol., vol. 12, Physiol. Plant Ecol. III., Springer, Berlin.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Kluwer Academic Publishers

About this chapter

Cite this chapter

Verkleij, J.A.C., Lolkema, P.C., De Neeling, A.L., Harmens, H. (1991). Heavy metal resistance in higher plants: biochemical and genetic aspects. In: Rozema, J., Verkleij, J.A.C. (eds) Ecological responses to environmental stresses. Tasks for vegetation science, vol 22. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0599-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0599-3_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6757-7

  • Online ISBN: 978-94-009-0599-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics