Skip to main content

Contamination of coastal wetlands with heavy metals: factors affecting uptake of heavy metals by salt marsh plants

  • Chapter
Ecological responses to environmental stresses

Part of the book series: Tasks for vegetation science ((TAVS,volume 22))

Abstract

In this paper, the factors affecting uptake of heavy metals by salt marsh plants from contaminated salt marsh soils are discussed. Three routes of uptake can be distinguished: from the soil through the roots, from the water through the shoots during flooding and from atmospheric deposits through the shoots. The first route is considered most important. In the soil, the mobility and availability of the metals is determined by their chemical speciation. One of the most important factors determining the chemical speciation of the metals in salt marsh soils is the oxidation state of the soil. Due to the oxidative activity of the roots, plants are capable of changing the oxidation state of the soil in the rhizosphere. The resulting increase of the redox potential of the soil may strongly influence the mobility and availability of heavy metals to salt marsh plants. Apart from the chemical speciation of heavy metals in salt marsh soils, other factors, like interactions with micro-organisms, inter- and intra-specific differences in uptake systems of the plants and (micro-)climatic characteristics, may strongly determine uptake of heavy metals by salt marsh plants. It is discussed that in future research these factors should get more attention. The concept of biomonitoring may prove a helpful tool for this purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdel-Sabour, M. F., Mortvedt, J. J. & Kelsoe, J. J., 1988. Cadmium-zinc interactions in plants and extractable cadmium and zinc fractions in soil. Soil Sci. 145: 425–431.

    Article  Google Scholar 

  • Armstrong, W., 1978. Root aeration in the wetland condition. In: D. D. Hook & R. M. M. Crawford (eds.), Plant life in anaërobic environments. Ann Arbor inc. Mich.: 269–297.

    Google Scholar 

  • Armstrong, W., Wright, E. J., Lythe, S. & Gaynard, T. J., 1985. Plant zonation and effects of the spring-neap tidal cycle on soil aeration in a Humber salt marsh. J. Ecol. 73: 323–339.

    Article  Google Scholar 

  • Baker, A. J. M., 1981. Accumulators and excluders — Strategies in the response of plants to heavy metals. J. Plant Nutr. 3: 643–654.

    Article  CAS  Google Scholar 

  • Baumeister, W. & Ernst, W. H. O., 1978. Mineralstoffe und Pflanzenwachstum. Gustav Fisher Verlag, Stuttgart, New York.

    Google Scholar 

  • Beeftink, W. G., Nieuwenhuize, J., Stoeppler, M. & Mohl, C., 1982. Heavy metal accumulation in salt marshes from the Eastern and Western Scheldt. Sci. Total Environ. 25: 199–223.

    Article  CAS  Google Scholar 

  • Beeftink, W. G. & Rozema, J., 1988. The nature and functioning of salt marshes. In: W. Salomons, B. L. Bayne, E. K. Duursma & U. Förstner (eds.). Pollution of the North Sea: an assessment. pp. 59–87.

    Google Scholar 

  • Brümmer, G. W., Gerth, J. A. & Tiller, K. G., 1988. Reaction kinetics of the adsorption and desorption of nickel, zinc and cadmium by goethite. I. Adsorption and diffusion of metals. J. Soil Sci. 39: 37–52.

    Article  Google Scholar 

  • Christensen, T. H., 1987. Heavy metal competition for soil sorption sites at low concentrations. Proc. Int. Conf. Heavy metals in the environment, New Orleans. CEP consultants Ltd., Edinburgh, UK: 394–396.

    Google Scholar 

  • Crowder, A. A. & Macfie, S. M., 1986. Seasonal deposition of ferric hydroxide plaque on roots of wetland plants. Can. J. Bot. 64: 2120–2124.

    Article  CAS  Google Scholar 

  • Crowder, A. A., Macfie, S., St.-Cyr, L., Conlin, T., Badgery, J. & Johnson-Green, P., 1987. Root iron plaques and metal uptake by wetland plants. Proc. Int. Conf. Wetlands/Peat-lands Edmonton, Alberta, Canada: 503–508.

    Google Scholar 

  • Crowley, D. E., Reid, C. P. P. & Szaniszlo, P. J., 1988. Utilization of microbial siderophores in iron acquisition by oat. Plant Physiol. 87: 680–685.

    Article  PubMed  CAS  Google Scholar 

  • Elliot, H. A., Liberati, M. R. & Huang, C. P., 1986. Competitive adsorption of heavy metals by soils. J. Environ. Qual. 15: 214–219.

    Article  Google Scholar 

  • Ernst, W. H. O., 1987. Metal fluxes to coastal ecosystem and the response of coastal vegetation — a review. In: Vegetation between Land and Sea. A. H. L. Huiskes, C. W. P. M. Blom & J. Rozema, (eds.) pp. 302–310. Dr. W. Junk Publishers, Dordrecht.

    Google Scholar 

  • Ernst, W. H. O., Kraak, M. H. S. & Stoots, L., 1987. Growth and mineral nutrition of Scrophularia nodosa with various combinations of fulvic and humic acids. J. Plant Physiol. 127: 171–175.

    CAS  Google Scholar 

  • Ernst, W. H. O. & Leloup, S., 1987. Perennial herbs as monitors for moderate levels of metal fall-out. Chemosphere: 233–238.

    Google Scholar 

  • Gray, P., 1973. Encyclopedia of microscopy and microtechnique. Van Nostrand Reinhold Publ., New York. pp. 234–238.

    Google Scholar 

  • Huiskes, A. H. L. & Rozema, J., 1988. The impact of anthropogenic activities on the coastal wetlands of the North Sea. In: W. Salomons, B. L. Bayne, E. K. Duursma & U. Förstner (eds.). Pollution of the North Sea: an assessment. pp. 455–473.

    Google Scholar 

  • Kuboi, T., Noguchi, A., Yazaki, J., 1986. Family-dependent cadmium accumulation characteristics in higher plants. Plant Soil 92: 405–415.

    Article  CAS  Google Scholar 

  • Levan, M. A. & Riha, S. J., 1986. The precipitation of black oxide coatings on flooded conifer roots of low internal porosity. Plant Soil 95: 33–42.

    Article  CAS  Google Scholar 

  • Levitt, J., 1980. Responses of plants to environmental stresses. Vol. II. Academic Press, New York.

    Google Scholar 

  • Luoma, S. N., 1988. A comparison of field and bioassay approaches for assessing the bioavailability of sediment-bound trace metals. Presented at the International symposium on the fate and effects of toxic chemicals in large rivers and their estuaries, Québec, Canada, oct. 1988.

    Google Scholar 

  • Marschner, H., Römheld, V, Horst, W. J. & Martin, P., 1986. Root-induced changes in the rhizosphere: importance for the mineral nutrition of plants. Z. Pflanzenernähr. Bodenk. 149: 441–456.

    Article  CAS  Google Scholar 

  • Martin, M. H. & Coughtrey, P. J., 1982. Biological monitoring of heavy metal pollution. Land and air. Applied Science Publ., London.

    Google Scholar 

  • Morel, J. L., Mench, M. & Guckert, A., 1986. Measurement of Pb2+, Cu2+ and Cd2+ binding with mucilage exudates from maize (Zea mays L) roots. Biol. Fertil. Soils 2: 29–34.

    Article  Google Scholar 

  • Nye, P. H., 1981. Changes of pH across the rhizosphere induced by roots. Plant Soil 61: 7–26.

    Article  CAS  Google Scholar 

  • Otte, M. L., Buijs, E. P., Riemer, L., Rozema, J. & Broekman, R. A., 1987. The iron plaque on roots of salt marsh plants: a barrier to heavy metal uptake? Proc. Int. Conf. Heavy metals in the Environment, New Orleans (USA). CEP consultants, Edinburgh (UK): 407–409.

    Google Scholar 

  • Otte, M. L., Rozema, J., Koster, L., Haarsma, M. S. & Broekman, R. A., 1989. Iron plaque on roots of Aster tripolium L.: interaction with zinc uptake. New Phytol. 111: 309–317.

    Article  CAS  Google Scholar 

  • Ponnamperuma, F. N., 1984. Effects of flooding on soils. In: T. T. Kozlowski (ed.). Flooding and plant growth. Academic Press Inc., London.

    Google Scholar 

  • Rozema, J., Arp, W., Van Diggelen, J., Van Esbroek, M., Broekman, R. A. & Punte, H., 1986a. Occurrence and ecological significance of vesicular arbuscular mycorrhiza in the salt marsh environment. Acta Bot. Neerl. 35: 457–467.

    Google Scholar 

  • Rozema, J., Otte, M. L., Broekman, R. A. & Wezenbeek, J. M., 1986b. The uptake and translocation of heavy metals by salt marsh plants from contaminated salt marsh sediment: possibilities for bioindication. Proc. Int. Conf. Environmental Contamination, Amsterdam, CEP Consultants, Edinburgh: 123–125.

    Google Scholar 

  • Rozema, J., Otte, M. L., van Schie, C. & Ernst, W. H. O., 1988. Foliar uptake of heavy metals by estuarine plants in response to contaminated sea water flooding. Proc. Int. Conf. Environmental Contamination, Venice: 73–75.

    Google Scholar 

  • Rozema, J. & Roosenstein, J., 1985. Effects of zinc, copper and cadmium on the mineral nutrition and ion secretion of salt secreting halophytes. Vegetado 62: 554–556.

    Google Scholar 

  • Salomons, W. & Förstner, U., 1984. Metals in the Hydrocycle. Springer Verlag, Berlin.

    Google Scholar 

  • Schierup, H.-H. & Larsen, V J., 1981. Macrophyte cycling of zinc, copper, lead and cadmium in the littoral zone of a polluted and non-polluted lake I. Availability, uptake and translocation of heavy metals in Phragmites australis (Cav.) Trin. Aquat. Bot. 11: 197–210.

    Article  CAS  Google Scholar 

  • Taylor, G. J. & Crowder, A. A., 1983. Uptake and accumulation of copper, nickel and iron by Typha latifolia grown in solution culture. Can. J. Bot. 61: 1825–1830.

    Article  CAS  Google Scholar 

  • Tinker, P. B. & Gildon, A., 1983. Mycorrhizal fungi and ion uptake. In: D. A. Robb & Pierpoint, W. S. (eds.). Metals and micro nutrients: uptake and utilization by plants. Academic Press, London, New York: 21–32.

    Google Scholar 

  • Trolldenier, G., 1988. Visualization of oxidizing power of rice roots and possible participation of bacteria in iron deposition. Z. Pflanzenernähr. Bodenk. 151: 117–121.

    Article  CAS  Google Scholar 

  • Van Duin, W. E., Rozema, J. & Ernst, W. H. O., 1990. Seasonal and spatial variation in the occurrence of vesicular arbuscular (VA) mycorrhiza in salt marsh plants. Agric. Ecosyst. & Environ. 29: 107–110.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Kluwer Academic Publishers

About this chapter

Cite this chapter

Otte, M.L. (1991). Contamination of coastal wetlands with heavy metals: factors affecting uptake of heavy metals by salt marsh plants. In: Rozema, J., Verkleij, J.A.C. (eds) Ecological responses to environmental stresses. Tasks for vegetation science, vol 22. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0599-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0599-3_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6757-7

  • Online ISBN: 978-94-009-0599-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics