Skip to main content

Stress tolerance in plants — the evolutionary framework

  • Chapter
Ecological responses to environmental stresses

Part of the book series: Tasks for vegetation science ((TAVS,volume 22))

Abstract

Stress environments, particularly those caused by man, provide a unique opportunity to observe evolution in action and the ways in which tolerance to stress originates. The basic mechanism is that proposed by Darwin, but the evolution is faster and more localised than we might expect. It is also limited by the availability of appropriate variation and by fitness in normal environments. Where stress conditions fluctuate, systems allowing facultative adaptation by phenotypic plasticity appear, but less is known about how they evolve.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al-Hiyaly, S. A., McNeilly, T. & Bradshaw, A. D., 1988. The effects of zinc contamination from electricity pylons — evolution in a replicated situation. New Phytologist 110: 571–580.

    Article  CAS  Google Scholar 

  • Ashraf, M., McNeilly, T. & Bradshaw, A. D., 1986. Tolerance of sodium chloride and its genetic basis in natural populations of four grass species. New Phytologist 103: 725–734.

    Article  Google Scholar 

  • Aston, J. L. & Bradshaw, A. D., 1966. Evolution in closely adjacent plant populations II Agrostis stolonifera in maritime habitats. Heredity, London 21: 649–664.

    Google Scholar 

  • Bishop, J. A. & Cook, L. M. (eds.), 1981. Genetic Consequences of Man Made Change. Academic Press, London.

    Google Scholar 

  • Bradshaw, A. D. & Hardwick, K., 1989. Evolution and stress-genotypic and phenotypic components. In: P. Calow (ed) Evolution, Ecology and Environmental Stresss.

    Google Scholar 

  • Bradshaw, A. D. & Hardwick, K., 1989. Evolution and stress-genotypic and phenotypic components. Biological Journal of the Linnean Society 37: 137–155.

    Article  Google Scholar 

  • Bradshaw, A.D., 1984. The importance of evolutionary ideas in ecology — and vice versa. In: B. Shorrocks (ed.) Evolutionary Ecology. Blackwell, Oxford pp. 1–25.

    Google Scholar 

  • Clausen, J., Keck, D. D. & Hiesey, W. M., 1948. Experimental studies on the nature of plant species 111 Environmental responses of climatic races of Achillea. Carnegie Institute of Washington Publication No. 581. Carnegie Institute, Washington.

    Google Scholar 

  • Ernst, W. H. O., 1974. Schwermetallvegetation der Erde. Fischer, Stuttgart.

    Google Scholar 

  • Ernst, W. H. O., 1982. Schwermetallpflanzen. In: H. Kinzel (ed.) Pflanzenökologie und Mineralstoffwechsel. Ulmer-Verlag, Stuttgart pp. 507–519.

    Google Scholar 

  • Ernst, W. H. O., Verkleij, J. A. C. & Vooijs, R., 1982. Bioindication of surplus of heavy metals in terrestrial ecosystems. Environmental Monitoring and Assessment 3: 297–305.

    Article  Google Scholar 

  • Farrow, S., McNeilly, T. & Putwain, P. D., 1981. The dynamics of natural selection for tolerance in Agrostis canina L. subsp. montana Hartm. In: International Conference, Heavy Metals in the Environment, Amsterdam 1981. C.E.P. Consultants, Edinburgh pp. 289–295.

    Google Scholar 

  • Hickey, D. A. & McNeilly, T., 1976. Competition between metal-tolerant and normal plant populations: a field experiment on normal soil. Evolution 29: 458–464.

    Article  Google Scholar 

  • Jain, S. K. & Bradshaw, A. D., 1966. Evolutionary divergence among adjacent plant populations I The evidence and its theoretical analysis. Heredity, London 21: 407–421.

    Article  Google Scholar 

  • Snaydon, R. W. & Davies, M. S., 1976. Rapid evolution in a mosaic environment IV Populations of Anthoxanthum odoratum at sharp boundaries. Heredity, London 37: 9–25.

    Google Scholar 

  • Wild, H. & Bradshaw, A.D., 1977. The evolutionary effects of metalliferous and other anomalous soils in South Central Africa. Evolution 31: 282–293.

    Article  Google Scholar 

  • Wu, L., Bradshaw, A. D. & Thurman, D. A., 1975. The potential for evolution of heavy metal tolerance in plants 111 The rapid evolution of copper tolerance in Agrostis stolonifera. Heredity, London 34: 165–187.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Kluwer Academic Publishers

About this chapter

Cite this chapter

Bradshaw, A.D., McNeilly, T. (1991). Stress tolerance in plants — the evolutionary framework. In: Rozema, J., Verkleij, J.A.C. (eds) Ecological responses to environmental stresses. Tasks for vegetation science, vol 22. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0599-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0599-3_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6757-7

  • Online ISBN: 978-94-009-0599-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics