Advertisement

Numerical Simulation 0f Dislocation Patterns during Plastic Deformation

  • N. M. Ghoniem
  • R. J. Amodeo
Part of the NATO ASI Series book series (NSSE, volume 183)

Abstract

A new method for the numerical simulation of dislocation patterns in solids undergoing plastic deformation is introduced. The term dislocation dynamics (DD) is used to describe the technique and to distinguish it from traditional molecular dynamics (MD) simulations. The basis of the approach is the simultaneous solution of the equations of motion of aggregates of dislocations under the influence of self- and externally-applied stress fields. Dislocation climb and glide motions are given by phenomenological and empirical relationships. Forces on dislocations are computed by considering the long-range- and applied- stress fields of each dislocation in the simulation space. Short-range dislocation interactions are represented as events. These interactions are: generation, annihilation, pinning, junction, and dipole formation. Criteria for these processes are based on experimental observations. Two important computational aspects are emphasized for their uniqueness in the DD method. The first is that the stress field is tensorial and not scalar, thereby giving strong directional dependencies to dislocation motion. The second aspect is the need to appropriately select the simulation timestep in order to represent short-range reactions. Several examples are given to show the simulation of persistent slip bands and dislocation cells.

Keywords

Applied Stress Burger Vector Screw Dislocation Edge Dislocation Mobile Dislocation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. Nicolis and I. Prigogine, Self-Organization in Nonequilibrium Systems ( Wiley Press, New York, 1977 ).Google Scholar
  2. [2]
    F. F. Abraham, Adv. in Phys. 35 (1986) 1.CrossRefGoogle Scholar
  3. [3]
    J. W. Gibbs, Collected Works, v. 1 (Yale University Press, New Haven, CT, 1948 ) pp. 105 - 115, 252-258.Google Scholar
  4. [4]
    J. W. Cahan, Acta Metall. 9 (1961) 795.CrossRefGoogle Scholar
  5. [5]
    D. W. Heerman, Phys. Rev. Lett. 52 (1984) 1126.CrossRefGoogle Scholar
  6. [6]
    H. Haken, Synergetics ( Springer-Verlag, New York, 1977 ).Google Scholar
  7. [7]
    D. Holt, J. Appl. Phys. 41 (1970) 3197.CrossRefGoogle Scholar
  8. [8]
    J. H. Gittus, Acta Metall. 22 (1974) 789.CrossRefGoogle Scholar
  9. [9]
    J. H. Gittus, Philos. Mag. 35 (1977) 293.CrossRefGoogle Scholar
  10. [10]
    J. H. Gittus, Philos. Mag. 39 (1979) 829.CrossRefGoogle Scholar
  11. [11]
    Mater Scit and Engrg. 81 (1986).Google Scholar
  12. [12]
    D. Kuhlmann-Wilsdorf, Mater. Sci. and Engrg. 86 (1987) 53.CrossRefGoogle Scholar
  13. [13]
    R. Sandstrom, Acta Metall. 25 (1977) 905.CrossRefGoogle Scholar
  14. [14]
    R. Sandstrom, Acta Metall. 25 (1977) 897.CrossRefGoogle Scholar
  15. [15]
    J. C. M. Li, J. Appl. Phvs. 33 (1962) 2958.Google Scholar
  16. [16]
    N. M. Ghoniem, J. R. Matthews, and R. J. Amodeo, Res Mechanica. accepted.Google Scholar
  17. [17]
    D. Walgraef and E. Aifantis, Intl. J. Engrg. Sci. 23 (1985) 1359.CrossRefGoogle Scholar
  18. [18]
    D. Walgraef and E. Aifantis, Intl. J. Engrg. Sci. 23 (1985) 1365.CrossRefGoogle Scholar
  19. [19]
    D. Walgraef and E. Aifantis, Intl. J. Engrg. Sci. 24 (1986) 1789.CrossRefGoogle Scholar
  20. [20]
    R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles ( McGraw Hill, New York, 1981 ).Google Scholar
  21. [21]
    C. R. Anderson, J. Comp. Phys. 62 (1986) 111.CrossRefGoogle Scholar
  22. [22J.
    A. W. Appel, SIAM J. Sci. Stat. Comp. 6 (1985) 85.CrossRefGoogle Scholar
  23. [23]
    J. E. Mayer and M. G. Mayer, Statistical Mechanics (Wiley, New York, 1940 ) Chapters 14, 15.Google Scholar
  24. [24]
    L. Greengard and V. Rokhlin, “A Fast Algorithm for Particle Simulation,” Yale University report YALEU/DCS/RR-459, 1986.Google Scholar
  25. [25]
    A. Brandt, Math. Comp. 31 (1977) 333.Google Scholar
  26. [26]
    B. J. Alder and T. E. Wainwright, J. Chem. Phvs. 27 (1957) 1208.Google Scholar
  27. [27]
    A. Rahman, Phvs. Rev. A136 (1964) 405.CrossRefGoogle Scholar
  28. [28]
    L. Verlet, Phvs. Rev. 15 (1967) 98.CrossRefGoogle Scholar
  29. [29]
    H. C. Andersen, J. Chem. Phvs. 72 (1980) 2384.Google Scholar
  30. [30]
    M. J. Turunen, Philos. Mag. 30 (1974) 1033.Google Scholar
  31. [31]
    J. P. Hirth and J. Lothe, Theory of Dislocations ( Wiley-Interscience, New York, 1982 ).Google Scholar
  32. [32]
    M. W. Grabski and J. W. Wyrzykowski, Mater. Sci. and Engrg. 44 (1980) 229.CrossRefGoogle Scholar
  33. [33]
    D. F. Stein and J. R. Low, Jr., J. Appl. Phys. 32 (1960) 362.CrossRefGoogle Scholar
  34. [34]
    R. W. Rohde and C. H. Pitt, J. Appl. Phys. 38 (1967) 876.CrossRefGoogle Scholar
  35. [35]
    W. F. Greenman, T. Vreeland, Jr., and D. J. Wood, J. APPI. Phvs. 38 (1967) 3595.CrossRefGoogle Scholar
  36. [36]
    M. A. Meyers and K. K. Chawla, Mechanical Metallurgy ( Prentice-Hall, New Jersey, 1984 ).Google Scholar
  37. [37]
    A. S. Argon, F. Prinz, and W. C. Moffatt in: Dislocation Creep in Subgrain-Forming Pure Metals and Alloys. Eds. B. Wilshire and D. R. J. Owen (Pineridge Press, UK, 1981 ) p. 1.Google Scholar
  38. [38]
    M. Peach and J. S. Kohler, Phvs. Rev. 80 (1950) 436.CrossRefGoogle Scholar
  39. [39]
    R. Lagneborg, Met. Sci. J. 6 (1972) 127. or Metall.?Google Scholar
  40. [40]
    R. Lagneborg, Met. Sci. J. 3 (1961) 161.Google Scholar
  41. [41]
    U. Essmann and H. Mughrabi, Philos. Mag. 40 (1979) 731.Google Scholar
  42. [42]
    J. Friedel, Dislocations ( Pergamon Press, Oxford, 1954 ).Google Scholar
  43. [43]
    U. Essmann and M. Rapp, Acta Metall. 21 (1973) 1305.CrossRefGoogle Scholar
  44. [44]
    F. Prinz and A. S. Argon., Phvs. Status Solidi A57 (1980) 741.CrossRefGoogle Scholar
  45. [45]
    F. Prinz, H. P. Karnthaler, and H. 0. K. Kirchner, Acta Metall. 29 (1981) 1029.Google Scholar
  46. [46]
    H. Neuhauser, 0. B. Arkan, and H. H. Potthoff, Mater. Sci. and Engrg. 81 (1986) 201.CrossRefGoogle Scholar
  47. [47]
    J. C. M. Li, Discuss. Faradav Soc. 38 (1964) 138.CrossRefGoogle Scholar
  48. [48]
    H. Mughrabi, in: Continuum Models of Discrete Systems (North-Holland Publ. Co., Amsterdam, 1981 ) p. 241.Google Scholar
  49. [49]
    W. T. Read, Dislocations in Crystals ( McGraw-Hill, New York, 1953 ).Google Scholar
  50. [50]
    D. Caillard and J. L. Martin, Acta Metall. 31 (1983) 813.CrossRefGoogle Scholar
  51. [51]
    D. Caillard and J. L. Martin, in: Creep and Fracture of Engineering Structures. Eds. B. Wilshire and D. R. L. Owen ( Pineridge Press, Swansea, 1981 ) p. 17.Google Scholar
  52. [52]
    G. Saada, Acta Metall. 8 (1960) 841.CrossRefGoogle Scholar
  53. [53]
    H. Mughrabi, Philos. Mag.. 23 (1971) 897.Google Scholar
  54. [54]
    A. S. Argon, in: Phvsics and Strength of Plasticity. Ed. A. S. Argon ( MIT Press, Cambridge, MA, 1970 ) p. 217.Google Scholar
  55. [55]
    J. Bardeen and C. Herring, Imperfections in Nearly Perfect Crystals ( Wiley Press, New York, 1952 ).Google Scholar
  56. [56]
    F. R. N. Nabarro, Philos. Mag. A16 (1967) 231.CrossRefGoogle Scholar
  57. [57]
    B. Burton, Philos. Mag. A45 (1982) 657.Google Scholar
  58. [58]
    R. J. Amodeo and N. M. Ghoniem, Int. J. Engrg. Sci. 26 (1988) 653.CrossRefGoogle Scholar
  59. [59]
    R. Amodeo and N. M. Ghoniem, “Dislocation Dynamics: Part I—A Proposed Methodology for Deformation Micromechanics,” University of California Los Angeles report UCLA-ENG-8951 ( June 1989 ) Phvs. Rev., submitted.Google Scholar
  60. [60]
    C. Laird, P. Charsley, and H. Mughrabi, Mater. Sci. and Engrg. 81 (1986) 433.CrossRefGoogle Scholar
  61. [61]
    H. Mughrabi, Mater. Sci. and Engrg. 33 (1978) 207.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • N. M. Ghoniem
    • 1
  • R. J. Amodeo
    • 2
  1. 1.School of Engineering and Applied ScienceUniversity of CaliforniaLos AngelesUSA
  2. 2.Xerad Inc.Suite 102 Santa MonicaUSA

Personalised recommendations