Advertisement

Defects and Defect-Mediated Turbulence

Part of the NATO ASI Series book series (NSSE, volume 183)

Abstract

We give a description of defects of macroscopic structures by means of numerical simulations of Ginzbug-Landau equations, and describe a mechanism for spontaneous appearance of defects in a far from equilibrium system.

Keywords

Rayleigh Number Wave Pattern Topological Defect Spiral Wave Phase Gradient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Coullet, L. Gil, and J. Lega, Physica D 37, 91 (1989).Google Scholar
  2. 2.
    Cellular structures in instabilities, J. E. Wesfreid, and S. Zaleski, Eds., Lecture Notes in Physics 210, Springer-Verlag, Berlin (1984).Google Scholar
  3. 3.
    C. Normand, Y. Pomeau, and M. Velarde, Rev. Mod. Phys. 49, 581 (1977).CrossRefGoogle Scholar
  4. 4.
    S. Chandrasekhar, Hydrodynamic and hydromagnetic stability, Clarendon, Oxford University Press (1961).Google Scholar
  5. 5.
    P. Bergé and M. Dubois, Contemp. Phys. 25, 535 (1984).CrossRefGoogle Scholar
  6. 6.
    M. C. Cross, and A. C. Newell, Physica 10D, 299 (1984).Google Scholar
  7. 7.
    A. C. Newell, T. Passot, and M. Souli, The phase diffusion and mean drift equations for convection at finite Rayleigh numbers in large containers I., preprint (1989).Google Scholar
  8. 8.
    C. Newell, and J. A. Whitehead, J. Fluid Mech. 38, 279 (1969).CrossRefGoogle Scholar
  9. 9.
    L. A. Segel, J. Fluid Mech. 38, 203 (1969).CrossRefGoogle Scholar
  10. 10.
    E. D. Siggia, and A. Zippelius, Phys. Rev. Lett. 47, 835 (1981).CrossRefGoogle Scholar
  11. 11.
    E. D. Siggia, and A. Zippelius, Phys. Rev. A 24, 1036 (1981).Google Scholar
  12. 12.
    Y. Kuramoto, Chemical oscillations, waves and turbulence, Springer Series in Synergetics, Vol. 19, Springer-Verlag (1984).Google Scholar
  13. 13.
    W. Pesch, and L. Kramer, Z. Phys. B 63, 121 (1986).CrossRefGoogle Scholar
  14. 14.
    J. Lega, Le Journal de Physique Colloque C3, 50, C3–193 (1989).Google Scholar
  15. 15.
    S. Bretherton, and E. A. Spiegel, Phys. Lett. A 96, 152 (1983).Google Scholar
  16. 16.
    P. Chossat, and G. Iooss, Jpn. J. Appl. Math. 2, 37 (1985).CrossRefGoogle Scholar
  17. 17.
    P. Coullet, S. Fauve, and E. Tirapegui, J. Phys. (Paris) Lett. 46, 787 (1985).Google Scholar
  18. 18.
    P. Coullet, C. Elphick, L. Gil, and J. Lega, Phys. Rev. Lett. 59, 884 (1987).CrossRefGoogle Scholar
  19. 19.
    H. R. Brand, P. S. Lomdahl, and A. C. Newell, Phys. Lett. A 118, 67 (1986).Google Scholar
  20. 20.
    Propagation in systems far from equilibrium, J. E. Wesfreid, H. R. Brand, P. Manneville, G. Albinet, and N. Boccara, Eds., Springer-Verlag, Berlin, Heidelberg (1988).Google Scholar
  21. 21.
    L. Gil, and J. Lega, in [20], p. 164.Google Scholar
  22. 22.
    S. Ciliberto, and M. A. Rubio, Phys. Rev. Lett. 25, 2652 (1987).CrossRefGoogle Scholar
  23. 23.
    E. Moses, J. Fineberg, and V. Steinberg, Phys. Rev. A 35, 2757 (1987).Google Scholar
  24. 24.
    A. Chiffaudel, B. Perrin, and S. Fauve, Spatiotemporal dynamics of oscillatory convection at low Prandtl number: waves and defects, preprint (1988).Google Scholar
  25. 25.
    A. Joets, and R. Ribotta, Defects and transition to disorder in space-time patterns of non-linear waves, to appear in New trends in non-linear dynamics and pattern forming phenomena: the geometry of non-equilibrium, P. Coullet and P. Huerre, Eds., NATO ASI Series, Plenum (1990).Google Scholar
  26. 26.
    R. W. Walden, P. Kolodner, A. Passner, and C. M. Surko, Phys. Rev. Lett. 55, 496 (1985).CrossRefGoogle Scholar
  27. 27.
    J. Lega, C. R. Acad. Sci. Paris, II 309, 1401 (1989).Google Scholar
  28. 28.
    R. Ribotta, and A. Joets, in [2], p. 249.Google Scholar
  29. 29.
    E. Guazzelli, C. R. Acad. Sci. Paris, B 291, 9 (1980).Google Scholar
  30. 30.
    X. D. Yang, A. Joets, and R. Ribotta, in [20], p. 194.Google Scholar
  31. 31.
    J. M. Dreyfus, and E. Guyon, J. Physique 42, 283 (1981).CrossRefGoogle Scholar
  32. 32.
    J. Occelli, E. Guazzelli, and J. Pantaloni, J. Phys. (Paris) Lett. 44, 567 (1983).Google Scholar
  33. 33.
    A. Joets, and R. Ribotta, in [2], p. 294.Google Scholar
  34. 34.
    A. Pocheau, V. Croquette, and P. Le Gal, Phys. Rev. Lett. 55, 1094 (1985).CrossRefGoogle Scholar
  35. 35.
    I. Rehberg, S. Rasenat, and V. Steinberg, Phys. Rev. Lett. 62, 756 (1989).CrossRefGoogle Scholar
  36. 36.
    J. Toner, and D. R. Nelson, Phys. Rev. B 23, 316 (1981).Google Scholar
  37. 37.
    D. Waigraef, G. Dewel, and P. Borckmans, Z. Phys. B 48, 167 (1982).CrossRefGoogle Scholar
  38. 38.
    P. Coullet, L. Gil, and J. Lega, Phys. Rev. Lett. 62, 1619 (1989).CrossRefGoogle Scholar
  39. 39.
    P. Coullet, and J. Lega, Europhys. Lett. 7, 511 (1988).CrossRefGoogle Scholar
  40. 40.
    Y. Kuramoto, Suppl. Prog. Theor. Phys. 64, 346 (1978).CrossRefGoogle Scholar
  41. 41.
    Y. Pomeau, and P. Manneville, J. Phys. Lett. 40, 609 (1979).CrossRefGoogle Scholar
  42. 42.
    T. B. Benjamin, and J. E. Feir, J. Fluid Mech. 27, 417 (1967).CrossRefGoogle Scholar
  43. 43.
    A. C. Newell in Lectures in Applied Mathematics, Vol. 15, 157, Am. Math. Society, Providence (1974).Google Scholar
  44. 44.
    Gil, J. Lega, and J. L. Meunier, Statistical properties of defect-mediated turbulence, to appear in Phys. Rev. A.Google Scholar
  45. 45.
    Y. Kuramoto, Prog. Theor. Phys. 71, 1182 (1984).CrossRefGoogle Scholar
  46. 46.
    H. R. Brand, P. S. Lomdahl, and A. C. Newell, Physica 23D, 345 (1986).Google Scholar
  47. 47.
    Y. Kuramoto, and T. Tsuzuki, Prog. Theor. Phys. 55, 356 (1976).CrossRefGoogle Scholar
  48. 48.
    G. I. Sivashinsky, Acta Astronautica 4, 1177 (1977).CrossRefGoogle Scholar
  49. 49.
    J. M. Hyman, B. Nicolaenko, and S. Zaleski, Physica D 23, 265 (1986).Google Scholar
  50. 50.
    S. Nasuno, M. Sano, and Y. Sawada, Phase wave propagation in rectangular convective structure of nematic liquid crystal, submitted to J. Phys. Soc. Jpn.Google Scholar
  51. 51.
    K. Kawasaki, and T. Ohta, Physica 116A, 573 (1983).Google Scholar
  52. 52.
    K. Kawasaki, Prog. Theor. Phys. Suppl. 79, 161 (1984).CrossRefGoogle Scholar
  53. 53.
    S. Rica and E. Tirapegui, Interaction of defects in two dimensional systems, submitted to Phys. Rev. Lett.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • J. Lega
    • 1
  1. 1.Laboratoire de Physique ThéoriqueUniversité de Nice — Pare ValroseNice cedexFrance

Personalised recommendations