Advertisement

Recent Progress in the Theory of the Growth of Needle Crystals

  • M. Ben Amar
  • Y. Pomeau
Part of the NATO ASI Series book series (NSSE, volume 183)

Abstract

This presents a review of recent progress made in the theory of growth of needle crystal. We consider first the low undercooling limit and then the finite undercooling limit, where the result of a detailed calculation is compared with recent experiments. We review first the now classical Ivantsov solution and explain how to derive the proper scaling laws from simple boundary layer estimates. This allows us to consider then the effect of an imposed axial flow on the growth. We find by using scaling arguments several regimes of growth for a needle crystal under those conditions. The growth velocity and tip radius are derived, depending on the fluid velocity and undercooling. Finally we present results relevant for a finite dimensionless undercooling, including in particular kinetic effects, and we compare this with recent experiments on rapid solidification of metals and alloys.

Keywords

Boundary Layer Peclet Number Thermal Boundary Layer Axial Flow Integrodifferential Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Ananth and W.N. Gill, Chem. Eng. Comm. 68,1 (1988); R. Ananth and W.N.Google Scholar
  2. Gill, Journ. of Cryst. Growth 91, 587 (1988).CrossRefGoogle Scholar
  3. A. Barbieri, D. Hong and J. Langer, Phys. Rev.A36, 3340 (1987).Google Scholar
  4. A. Barbieri Phys. Rev.A 36, 5353 (1987).CrossRefGoogle Scholar
  5. A. Barbieri and J. Langer, to be published in Phys.Rev.A (1989).Google Scholar
  6. M. Ben Amar and Y. Pomeau Euro. Phys. Lett. 2, 307 (1986).CrossRefGoogle Scholar
  7. M. Ben Amar and B. Moussallam, Physica 25D, 155 (1987).Google Scholar
  8. M. Ben Amar Physica 31D, 409 (1988).Google Scholar
  9. M. Ben Amar, P. Bouissou and P. Pelcé, J. of Crystal Growth 92, 97 (1988).CrossRefGoogle Scholar
  10. M. Ben Amar and Y. Pomeau, Euro. Phys. Lett. 6, 609 (1988).CrossRefGoogle Scholar
  11. M. Ben Amar and Y. Pomeau, Euro. Phys. Lett. 6, 609 (1988).CrossRefGoogle Scholar
  12. P. Bouissou, B. Perrin and P. Tabeling, Phys. Rev.A 40, 509 (1989).CrossRefGoogle Scholar
  13. P.Bouissou Université P. et M. Curie Phd Thesis:“Influence d’un écoulement en croissance dendritique: aspects experimentaux et thdorique.” (1989).Google Scholar
  14. B. Caroli, C. Caroli, B. Roulet and J.S. Langer Phys. Rev. A33, 442 (1986).Google Scholar
  15. M.E. Glicksman, S.R. Coriell and G.B. McFadden, Ann. Rev. Fluid Mech., 307 (1986).Google Scholar
  16. G.P. Ivantsov, DokLAkad. Nauk SSSR 58, 567 (1947).Google Scholar
  17. D. Kessler, J. Koplik and H. Levine, Phys.Rev. A 33, 3352 (1986).CrossRefGoogle Scholar
  18. D. Kessler and H. Levine, Phys. Rev. Lett. 57, 3069 (1986)CrossRefGoogle Scholar
  19. D. Kessler, J. Koplik and H. Levine, Adv. in Phys. 37, 255 (1988).Google Scholar
  20. M. Kruskal and H. Segur. Segur " Asymptotics beyond all orders in a model of dendritic crystals, Aero. Res. Ass. of Princeton Tech. Memo (1985).Google Scholar
  21. J.Langer: “Chance and Matter”, Compte-Rendus des Houches (North Holland, 1987 ).Google Scholar
  22. M.A. Lemieux, J. Liu and G. Kotliar Phys.Rev. 36, 1849 (1987).CrossRefGoogle Scholar
  23. G.E. Nash and M.E. Glicksman Acta Metall. 22, 1283 (1974).Google Scholar
  24. P.Pelc€ and Y.Pomeau, Stud, in Appl. Math. 74,245 (1986).Google Scholar
  25. S. Tanveer, preprint (1989).Google Scholar
  26. R. Willnecker, D.M. Herlach and B. Feuerbacher, Phys. Rev. Lett. 62, 2707 (1989).CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • M. Ben Amar
    • 1
  • Y. Pomeau
    • 1
  1. 1.Laboratoire de Physique StatistiqueEcole Normale SupérieureParis Cedex 05France

Personalised recommendations