Skip to main content

Part of the book series: Studies in Cognitive Systems ((COGS,volume 5))

  • 162 Accesses

Abstract

Self-reference or self-applicability is an important theme throughout Computer Science, from recursive programs to undecidability results, from bootstrapping to program semantics. A relative latecomer to this list is Artificial Intelligence, for only recently has self-reference been seen as an important attribute of intelligent systems. This paper will give a bird’s-eye (and personal) overview of some of the issues surrounding self-reference in AI, especially those related to non-monotonicity, reification, and intentionality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Ackermann, W. “Zur axiomatik der mengenlehre,” Mathematische Annalen 131 pp. 336–345, 1956.

    Article  MathSciNet  MATH  Google Scholar 

  • Barwise, J. and J. Perry. Situations and Attitudes, MIT Press, 1983.

    Google Scholar 

  • Churchland, P. Matter and Consciousness, MIT Press, 1984.

    Google Scholar 

  • Dennett, D. Brainstorms, Bradford Books, 1978.

    Google Scholar 

  • des Rivieres, J. and H. Levesque. “The consistency of syntactical treatments of knowledge,” Proceedings of the Conference on Theoretical Aspects of Reasoning About Knowledge, Monterey, October 1986.

    Google Scholar 

  • Drapkin, J. and D. Perlis. “Step-logics: an alternative approach to limited reasoning,” Proceedings, 7th European Conference on Artificial Intelligence, Brighton, England, July 1986.

    Google Scholar 

  • Drapkin, J. and D. Perlis. “A preliminary excursion into step logics,” Proceedings, International Symposium on Methodologies for Intelligent Systems, Knoxville, Tennessee, October 1986.

    Google Scholar 

  • Elgot-Drapkin, J. and D. Perlis. “Reasoning situated in time,” submitted to Artificial Intelligence, 1988.

    Google Scholar 

  • Elgot-Drapkin, J. Ph.D. Dissertation, University of Maryland, 1988.

    Google Scholar 

  • Fagin, R. and J. Halpern. “Belief, awareness, and limited reasoning: preliminary report,” IJCAI 85, pp. 491–501, 1985.

    Google Scholar 

  • Feferman, S. “Toward useful type-free theories, I,” Journal of Symbolic Logic 49, 75–111, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  • Gilmore, P. “The consistency of partial set theory without extensionality,” Axiomatic Set Theory, T. Jech, ed., American Mathematical Society, pp. 147–153, 1974.

    Google Scholar 

  • Gödel, K. “Uber formal unentscheidbare Satze der Principia Mathematics and verwandter Systeme I,” Monatschrifte Mathematische Physik 38, pp. 173–198, 1931.

    Article  Google Scholar 

  • Kripke, S. “Outline of a theory of truth,” Journal of Philosophy 72, pp. 690–716, 1975.

    Article  Google Scholar 

  • Kripke, S. “A puzzle about belief,” Meaning and Use, A. Margalit, ed., Dordrecht, pp. 234–283, 1979.

    Google Scholar 

  • Levesque, H. “A logic of implicit and explicit belief,” Proceedings 3rd National Conference on Artificial Intelligence, pp. 198–202, 1984.

    Google Scholar 

  • Löb, M. “Solution of a problem of Leon Henkin,” Journal of Symbolic Logic 20, pp. 115–118, 1955.

    Article  MathSciNet  Google Scholar 

  • McCarthy, J. “First order theories of individual concepts and propositions,” Machine Intelligence 9, pp. 129–147, 1979.

    MathSciNet  Google Scholar 

  • McCarthy, J. “Circumscription—a form of non-monotonic reasoning,” Artificial Intelligence 13, pp. 27–39, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  • McCarthy, J. “Applications of circumscription to formalizing commonsense knowledge,” Artificial Intelligence 28, pp. 89–118, 1986.

    Article  MathSciNet  Google Scholar 

  • McDermott, D. and J. Doyle. “Non-monotonic logic I,” Artificial Intelligence 13, pp. 41–72, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  • Minsky, M. “Matter, mind, and models,” Semantic Information Processing, M. Minsky, ed., MIT Press, pp. 425–432, 1968.

    Google Scholar 

  • Montague, R. “Syntactical treatments of modality, with corollaries on re-flexion principles and finite axiomatizability,” Acta Philosophica Fennica 16, pp. 153–167, 1963.

    MathSciNet  MATH  Google Scholar 

  • Moore, R. “Semantical considerations on nonmonotonic logic,” IJCAI 83, 1983.

    Google Scholar 

  • Perlis, D. “Languages with self-reference I: foundations,” Artificial Intelligence 25, pp. 301–322, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  • Perlis, D. “On the consistency of commonsense reasoning,” Computational Intelligence 2, pp. 180–190, reprinted in M. Ginsberg. ed., Non-Monotonic Reasoning, Morgan Kaufmann, pp. 56–66, 1987.

    Google Scholar 

  • Perlis, D. “What is and what isn’t,” Symposium on Intentionality, Society for Philosophy and Psychology, Johns Hopkins University, 1986b.

    Google Scholar 

  • Perlis, D. “Circumscribing with sets,” Artificial Intelligence 31, pp. 201–211, 1987a.

    Article  MathSciNet  Google Scholar 

  • Perlis, D. “Ilow can a program mean?” Proceedings International Joint Conference on Artificial Intelligence,Milan, August, 1987.

    Google Scholar 

  • Perlis, D. “Languages with self-reference II: knowledge, belief, and modality,” Artificial Intelligence 34,pp. 179–212, 1988a.

    Google Scholar 

  • Perlis, D. “Autocircumscription,” Artificial Intelligence 36, pp. 223–236, 1988b.

    Article  MathSciNet  MATH  Google Scholar 

  • Perlis, D. “Commonsense set theory,” Meta-Level Architectures and Architectures, P. Maes and D. Nardi, eds., Elsevier, 1988c.

    Google Scholar 

  • Perlis, D. and R. Hall. “Intentionality as internality,” Behavioral and Brain Sciences, 9(1), pp. 151–152, 1986.

    Google Scholar 

  • Pylyshyn, Z. Computation and Cognition, MIT Press, 1984.

    Google Scholar 

  • Rapaport, W. “Syntactic semantics: foundations of computational natural-language understanding,” Aspects of Artificial Intelligence, J. Fetzer, ed., Kluwer, pp. 81–131, 1988.

    Chapter  Google Scholar 

  • Reiter, R. “A logic for default reasoning” Artificial Intelligence 13, pp. 81132, 1980.

    Article  MathSciNet  Google Scholar 

  • Rosenschein, S. and L. Kaelbling. “ The synthesis of digital machines with provable epistemic properties,” SRI Technical Report 412, 1987.

    Google Scholar 

  • Sloman, A. “Reference without causal links,” Proceedings 7th ECAI, July 21–25, 1986, Brighton, UK., pp. 369–381, 1986.

    Google Scholar 

  • Steels, L. “The explicit representation of meaning,” Proceedings Workshop on Meta-Level Architectures and Reflection, Sardinia, October 1986.

    Google Scholar 

  • Stich, S. From Folk Psychology to Cognitive Science: The Case Against Belief, MIT Press, 1984.

    Google Scholar 

  • Suchman, L. “Plans and situated actions,” Technical Report ISL-6, Xerox Palo Alto Research Center, February 1985.

    Google Scholar 

  • Tarski, A. “Der Wahrheitsbegriff,” in den formalisierten Sprachen, Studia Philosophic 1, pp. 261–405, 1936.

    Google Scholar 

  • Thomason, R. “A note on syntactical treatments of modality,” Synthese 44, pp 391–395, 1980.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Perlis, D. (1990). Thing and Thought. In: Kyburg, H.E., Loui, R.P., Carlson, G.N. (eds) Knowledge Representation and Defeasible Reasoning. Studies in Cognitive Systems, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0553-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0553-5_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6736-2

  • Online ISBN: 978-94-009-0553-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics