Skip to main content

Gamma-Rays from Accretion Processes and Relativistic Beams

  • Chapter
Physical Processes in Hot Cosmic Plasmas

Part of the book series: NATO ASI Series ((ASIC,volume 305))

Abstract

In this paper we review our recent works in studying the production of γ-rays from collapsed objects. The main discussed process is always the π°-decay. We simply changed the geometry of the sources, starting from the spherical symmetry to a strong anisotropy like in the beamed sources. Firstly we starded the calculations for the processes producing γ-rays via π°-decay in the spherical accretion of matter onto collapsed objects and then we moved in studying the interactions of a monoenergetic, one dimensional beam, with a Lorentz factor γ and velocity of the beam β, with the surroimding matter and radiation.

In the spherical accretion onto massive objects, the matter may be heated up to temperature as high as 10**12 K. In such a relativistic plasma, inelastic collision of protons may produce π°which are the γ-ray source. We determined the γ- ray energy production spectra in the como-ving plasma system for different temperature and expected γ- ray energy spectra for the case of spherically symmetric accretion of matter onto a black hole. The predictions of the model gauged to the quasar 3C 273 are presented. The photon-photon interaction has been taken into account. From the best fit, a dimension of the X-ray source of few times 10**17 cm is derived.

The photon energy spectra from the electron-proton (e-p) beam interactions with the matter and radiation were calculated. We obtained the photon energy spectra from Inverse Compton Scattering (ICS) of an arbitrary background radiation by relativistic electron-beams and photon energy spectra from p + p interactions via π°-decay for relativistic proton-beams. The results for selected beam Lorentz factors and selected angles between the emitted photon direction and the beam axis are presented. The calculated theoretical spectra from ICS of the background photons by relativistic electrons and from the interaction of beamed relativistic particles with the surrounding matter have been succesfully used to fit the spectrum of Cyg X-1, in the energy range greater than 1 MeV, and that of Geminga in the COS B energy range, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barashenkov, W.S. and Tonev, W.D. (1972), Wzaimodejstvija wysokoenergeticheskih chastic i atomnyh jader s jadrami, Moscow.

    Google Scholar 

  • Barashenkov, W.S. and Tonev, W.D. (1972), Wzaimodejstvija wysokoenergeticheskih chastic i atomnyh jader s jadrami, Moscow.

    Google Scholar 

  • Barashenkov, W.S. and Tonev, W.D. (1972), Wzaimodejstvija wysokoenergeticheskih chastic i atomnyh jader s jadrami, Moscow.

    Google Scholar 

  • Begelman, M.C. and Sikora, M. (1987), Astrophys. J. 322, 650.

    Article  ADS  Google Scholar 

  • Bezler, M., Kendziorra, E., Staubert, R., Hasinger, G., Pietsch, W., Reppin, C., Trumper, J., and Voges, W. (1984), Astron. Astrophys. 136, 351.

    ADS  Google Scholar 

  • Bignami, G.F., Bennet, K., Buccheri, R., Caraveo, P.A., Hermsen, W., Kanbach, G., Lichti, G.G., Masnou, J.L., Mayer-hasselwander, H.A., Paul, J.A., Sacco, B., Scarsi, L., Swanenburg, B.N., and Wills, R.D. (1981), Astron. Astrophys. 93, 71.

    ADS  Google Scholar 

  • Bignami, G.F., Caraveo, P.A., and Lamb, R.C. (1983), Astrophys. J. Letters 272, L9.

    Article  ADS  Google Scholar 

  • Bignami, G.F. and Hermsen, W. (1983), Ann. Rev. Astron. Astrophys. 21, 67.

    Article  ADS  Google Scholar 

  • Blumental, R.G. and Gould, R.J. (1970), Rev. Mod. Phys. 42, 237.

    Article  ADS  Google Scholar 

  • Bridle, A.H. and Perley, R.A. (1984) Ann. Rev. Astron. Astrophys. 22, 319.

    Article  ADS  Google Scholar 

  • Canfield, E., Howard, W.M., and Liang, E.P. (1987), Astrophys. J. 323, 565.

    Article  ADS  Google Scholar 

  • Cohen, M.H. and Urwin, S.C. (1984), in VLBI and Compact Radio Sources, (eds. R. Fanti, K. Kellerman, and G. Setti ), Dordrecht: Reidel, lAU Symp. No. 110, p. 95.

    Google Scholar 

  • Elvis, M., Feigelson, E., Griffiths, R.E., Henry, J.P., and Tananbaum, H. (1980), in High-lights of Astronomy, (ed. H. van der Laan).

    Google Scholar 

  • Frank, J., King, A.R., and Raine, D.J. (1985), in Accreting Power in Astrophysics, Cambridge University Press, U.K.

    Google Scholar 

  • Giovannelli, F., Karakula, S., and Tkaczyk, W. (1982a), Astron. Astrophys. 107, 376.

    ADS  Google Scholar 

  • Giovannelli, F., Karakula, S., and Tkaczyk, W. (1982b), Acta Astron. 32, 121.

    ADS  Google Scholar 

  • Gorecki, A. and Kluzniak, W. (1981), Acta Astron. 31, 457.

    ADS  Google Scholar 

  • Gould, R.J. (1980), Astrophys. J. 238, 1026.

    Article  ADS  Google Scholar 

  • Gould, R.J. (1981), Astrophys. J. 243, 677.

    Article  ADS  Google Scholar 

  • Halpern, J.P. and Tytler, D. (1988), Astrophys. J. 330, 201.

    Article  ADS  Google Scholar 

  • Karakula, S., Tkaczyk, W., and Giovannelli, F. (1984), Adv. Space Res. Vol. 3, No. 10–12, p. 335.

    Article  ADS  Google Scholar 

  • Kolykhalov, P.I. and Sunyaev, R.A. (1979), Soviet Astron. 23, 183.

    ADS  Google Scholar 

  • Liang, E.P. and Nolan, P.L. (1984), Space Sci. Rev. 38, 353.

    Article  ADS  Google Scholar 

  • Masnou, J.L., Bennett, K., Bignami, G.F., Bloemen, J.B.G.M., Buccheri, R., Caraveo, P.A., Hermsen, W., Kanbach, G., Mayer-Hasselwander, H.A., Paul, J.A., and Wills, R.D. (1981), Proc. 17th Int. Cosmic Ray Conf. (Paris) 1, 177.

    Google Scholar 

  • McConnell, M.L., Owens, A., Chupp, E.L., Dunphy, P.P., Forrest, D.J., and Vestrand, W.T. (1987), Proc. 20th Int. Cosmic Ray Conf. (Moscow) 1, 58.

    Google Scholar 

  • Michel, F.G. (1972), Astrophys. Space Sci. 15, 153.

    Article  ADS  Google Scholar 

  • Moffat, A.F.J., Schlickeiser, R., Shara, M.M., Sieber, W., Tuffs, R., and Kuhr, M. (1983), Astrophys. J. Letters 271, L45.

    Article  ADS  Google Scholar 

  • Ninkov, Z., Walker, G.A.H., and Yang, S. (1987a), Astrophys. J. 321, 425.

    Article  ADS  Google Scholar 

  • Ninkov, Z., Walker, G.A.H., and Yang, S. (1987b), Astrophys. J. 321, 438.

    Article  ADS  Google Scholar 

  • Oda, M. (1977), Space Sci. Rev. 20, 757.

    Article  ADS  Google Scholar 

  • Pietsch, W., Reppin, C., Trximper, J., Voges, W., Lewin, W., Kendziorra, E., and Staubert, R. (1981), Astron. Astrophys. 94, 234.

    ADS  Google Scholar 

  • Pollock, A.M.T., Bignami, G.F., Hermsen, W., Kanbach, G., Lichti, G.G., Masnou, J.L., Swanenburg, B.N., and Wills, R.D. (1981), Astron. Astrophys. 94, 116.

    ADS  Google Scholar 

  • Porcas, R.W. (1985), in Active Galactic Nuclei, (ed. J.E. Dyson ), Manchester University Press, U.K., p. 20.

    Google Scholar 

  • Primini, F.A., Cooke, B.A., Dobson, C.A., Howe, S.K., Scheepmaker, A., Wheaton, W.A., and Lewin, W.H.G. (1979), Nature 278, 234.

    Article  ADS  Google Scholar 

  • Protheroe, R.J. and Kazanas, D. (1983), Astrophys. J. 265, 620.

    Article  ADS  Google Scholar 

  • Rees, M. (1985), Proc. 19th Int. Cosmic Ray Conf. (La Jolla), 9, 1.

    Google Scholar 

  • Reynolds, S.P. (1982), Astrophys. J. 256, 38.

    Article  ADS  Google Scholar 

  • Stecker, F.W. (1971), in Cosmic Gamma Rays, Baltimore: Mono Book Corp., NASA SP-249.

    Google Scholar 

  • Sunyaev, R.A. and Titarchuk, L.G. (1980), Astron. Astrophys. 86, 121.

    ADS  Google Scholar 

  • Swanenburg, B.N., Bennet, K., Bignami, G.F., Buccheri, R., Caraveo, P., Hermsen, W., Kanbach, G., Lichti, G.G., Masnou, J.L., Mayer-Hasselwander, H.A., Paul, J.A., Sacco, B., Scarsi, L., and Wills, R.D. (1981), Astrophys. J. Letters 243, L69.

    Article  ADS  Google Scholar 

  • Tkaczyk, W. (1978), Postepy Astronomii Tom XXVI, Zeszyt 2.

    Google Scholar 

  • Ulrich, M.H. (1981), Space Sci. Rev. 28, 89.

    Article  ADS  Google Scholar 

  • White, G.L. and Ricketts, M.J. (1979), Mon. Not. R. astr. Soc. 187, 757.

    ADS  Google Scholar 

  • Woodsworth, A.W., Higgs, L.A., and Gregory, P.C. (1980), Astron. Astrophys. 84, 379.

    ADS  Google Scholar 

  • Worral, D.M., Mushotzky, R.F., Boldt, E.A., Holt, S.S., and Serlemitsos, P.J. (1979), Astrophys. J. 232, 683.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Giovannelli, F., Bednarek, W., Karakula, S., Tkaczyk, W. (1990). Gamma-Rays from Accretion Processes and Relativistic Beams. In: Brinkmann, W., Fabian, A.C., Giovannelli, F. (eds) Physical Processes in Hot Cosmic Plasmas. NATO ASI Series, vol 305. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0545-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0545-0_26

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6732-4

  • Online ISBN: 978-94-009-0545-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics