Skip to main content

On the Role of Orthogonal Polynomials on the Unit Circle in Digital Signal Processing Applications

  • Chapter
Orthogonal Polynomials

Part of the book series: NATO ASI Series ((ASIC,volume 294))

Abstract

The aim of this contribution is first to show how the Szegö theory of orthogonal polynomials on the unit circle is intimately related to the celebrated Levinson algorithm, which is commonly used in digital signal processing (DSP) applications to solve various least-squares problems. A computationally more efficient substitute for the Levinson algorithm, termed the split Levinson algorithm, has recently been proposed in the DSP literature. In the case of real data, this new algorithm can be interpreted naturally in the framework of a well-defined one-to-one correspondence between the families of real Szegö polynomials and the families of polynomials orthogonal on the interval [-1, 1] with respect to a symmetric measure. More generally, the philosophy underlying the split Levinson algorithm opens the door to an interesting “tridiagonal approach” to the theory of complex Szegö polynomials, nonnegative definite Hermitian Toeplitz matrices, and related algebraic and function theoretic questions. Some of the main topics of this new mathematical framework are briefly reviewed and are shown on specific examples to be of particular interest in DSP applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Kailath, ‘A view of three decades of linear filtering theory’, IEEE Trans. Inform. Theory, IT-20, pp. 145 – 181, 1974.

    Google Scholar 

  2. J. Makhoul, ‘Linear prediction: a tutorial review’, Proc. IEEE, 63, pp. 561 – 580, 1975.

    Article  Google Scholar 

  3. W.B. Jones and A. Steinhardt, ’Applications of Schur fractions to digital filtering and signal processing’, in Rational Approximation and Interpolation, R.P. Graves-Morris, E.B. Saff and R.S. Varga eds, Springer Lecture Notes Math, no 1105, Springer-Verlag, Berlin, pp. 210–226, 1984.

    Google Scholar 

  4. Y. Genin, ‘An introduction to the modern theory of positive functions and some of its today applications to signal processing, circuits and systems problems’, ECCTD-87 Course, Proc. Europ. Conf. Circuit Theory and Design, 3, pp. 195 – 234, 1987.

    Google Scholar 

  5. G. Szegö, Orthogonal Polynomials, American Mathematical Society, New York, 1959.

    MATH  Google Scholar 

  6. U. Grenander and G. Szegö, Toeplitz Forms and their Applications, University of California Press, Berkeley, 1958.

    MATH  Google Scholar 

  7. A.V. Oppenheim and R.W. Schafer, Digital Signal Processing, Prentice-Hall, Engle- wood Cliffs, 1975.

    MATH  Google Scholar 

  8. J.D. Markel and A.H. Gray, Jr., Linear Prediction of Speech, Springer-Verlag, Berlin, 1976.

    Google Scholar 

  9. T. Kailath, ed., Linear Least-Squares Estimation, Benchmark Papers in Electrical Engineering and Computer Science, Dowden, Hutchinson & Ross, 17, 1977.

    Google Scholar 

  10. N. LeVinson, ‘The Wiener rms (root mean square) error criterion in filter design and prediction’, J. Math. Phys., 25, pp. 261 – 278, 1946.

    Google Scholar 

  11. G.H. Golub and C.F. Van Loan, Matrix Computations, North Oxford Academic, Oxford, 1983.

    MATH  Google Scholar 

  12. P. Delsarte and Y. Genin, ‘The split Levinson algorithm’, IEEE Trans. Acoust. Speech Signal Process., ASSP-34, pp. 470 – 478, 1986.

    Google Scholar 

  13. N.I. Akhiezer, The Classical Moment Problem, Oliver and Boyd, London, 1965.

    MATH  Google Scholar 

  14. V. Belevitch, Classical Network Theory, Holden-Day, San Francisco, 1968.

    MATH  Google Scholar 

  15. A. Fettweis, ‘Pseudopassivity, sensitivity, and stability of wave digital filters’, IEEE Trans. Circuit Theory, CT-19, pp. 668 – 673, 1972.

    Google Scholar 

  16. H. Lev-Ari and T. Kailath, ‘Lattice filter parametrization and modeling of nonstationary processes’, IEEE Trans. Inform. Theory, IT-30, pp. 2 – 16, 1984.

    Google Scholar 

  17. Y. Genin, ‘On a duality relation in the theory of orthogonal polynomials and its application in signal processing’, Proc. 1st Internat. Conf. Industrial and Applied Mathematics, Paris, pp. 102 – 113, 1987.

    Google Scholar 

  18. H. Krishna and S.D. Morgera, ‘The Levinson recurrence and fast algorithms for solving Toeplitz systems of linear equations’, IEEE Trans. Acoust. Speech Signal Process., ASSP-35, pp. 839 – 848, 1987.

    Google Scholar 

  19. P. Delsarte and Y. Genin, ‘The tridiagonal approach to Szegö’s orthogonal polynomials, Toeplitz linear systems and related interpolation problems’, SIAM J. Math. Anal., 19, pp. 718 – 735, 1988.

    MathSciNet  MATH  Google Scholar 

  20. P. Delsarte and Y. Genin, ‘An introduction to the class of split Levinson algorithms’, in Numerical Linear Algebra, Digital Signal Processing and Parallel Algorithms, G.H. Golub and P. Van Dooren eds, Springer NATO-ASI Series (to appear).

    Google Scholar 

  21. P. Delsarte and Y. Genin, ‘Tridiagonal approach to the algebraic environment of Toeplitz matrices, part I: basic results’ (submitted for publication).

    Google Scholar 

  22. P. Delsarte and Y. Genin, ‘Tridiagonal approach to the algebraic environment of Toeplitz matrices, part II: zero and eigenvalue problems’ (submitted for publication).

    Google Scholar 

  23. V.P. Pisarenko, ‘The retrieval of harmonics from a covariance function’, Geophys. J. R. Astr. Soc., 33, pp. 347 – 366, 1973.

    Google Scholar 

  24. P. Delsarte and Y. Genin, ‘The tridiagonal approach to inverse scattering problems’, Proc. IEEE Internat. Symp. Circuits and Systems, Philadelphia, 1, pp. 140 – 142, 1987.

    Google Scholar 

  25. P. Delsarte, Y. Genin, and Y. Kamp, ‘Orthogonal polynomial matrices on the unit circle’, IEEE Trans. Circuits and Systems, CAS-25, pp. 149 – 160, 1978.

    Google Scholar 

  26. Y. Bistritz, H. Lev-Ari, and T. Kailath, ‘Immittance-domain Levinson algorithms’, Proc. IEEE Internat. Conf. Acoustics Speech Signal Processing, pp. 253 – 256, 1986.

    Google Scholar 

  27. P. Delsarte and Y. Genin, ‘The multichannel split Levinson algorithm’ in Linear Circuits, Systems and Signal Processing Theory and Applications, C.I. Byrnes, C.F. Martin and R.E. Saeks eds, North-Holland, Amsterdam, pp. 183–190, 1988.

    Google Scholar 

  28. P. Delsarte and Y. Genin, ‘Multichannel singular predictor polynomials’, IEEE Trans. Circuits and Systems, CAS-35, pp. 190 – 200, 1988.

    Google Scholar 

  29. G. Cybenko, ‘The numerical stability of the Levinson-Durbin algorithm for Toeplitz systems of equations’, SIAM J. Sci. Statist. Comput., 1, pp. 303 – 320, 1980.

    Article  Google Scholar 

  30. J. Le Roux and C. Gueguen, ‘A fixed point computation of partial correlation coefficients’, IEEE Trans. Acoust. Speech Signal Process., ASSP-25, pp. 257 – 259, 1977.

    Google Scholar 

  31. F. Itakura and S. Saito, ‘Digital filtering techniques for speech analysis and synthesis’, Proc. 7th Internat. Congr. Acoust., Budapest, pp. 261 – 264, 1971.

    Google Scholar 

  32. T. Kailath, S.-Y. Kung, and M. Morf, ‘Displacament ranks of matrices and linear equations’, J. Math. Anal. Appl., 68, pp. 395 – 407, 1979.

    Article  MathSciNet  MATH  Google Scholar 

  33. M. Marden, Geometry of Polynomials, American Mathematical Society, Providence, RI, 1966.

    Google Scholar 

  34. A.Vieira and T. Kailath, ‘Another approach to the Schur-Cohn criterion’, IEEE Trans. Circuits and Systems, CAS-24, pp. 218 – 220, 1977.

    Google Scholar 

  35. A.H. Gray, Jr. and J.D. Markel, ‘Digital lattice and ladder filter synthesis’, IEEE Trans. Audio Electroacoust., AU-21, pp. 491 – 2500, 1973.

    Google Scholar 

  36. P. Dewilde and H. Dym, ‘Lossless inverse scattering, digital filters, and estimation theory’, IEEE Trans. Inform. Theory, IT-30, pp. 644 – 662, 1984.

    Google Scholar 

  37. P. Delsarte and Y. Genin, ‘On the splitting of classical algorithms in linear prediction theory’, IEEE Trans. Acoust. Speech Signal Process., ASSP-35, pp 645 – 653, 1987.

    Google Scholar 

  38. P. Delsarte and Y. Genin, ‘A survey of the split approach based techniques in digital signal processing applications’, Philips J. Res., 43, pp. 346 – 374, 1988.

    MathSciNet  MATH  Google Scholar 

  39. P. Delsarte and Y. Genin, ‘An extension of the split Levinson algorithm and its relatives to the joint process estimation problem’, IEEE Trans. Inform. Theory (to appear).

    Google Scholar 

  40. P. Delsarte and Y. Genin, ‘On the split approach based algorithms for DSP problems’, in Numerical Linear Algebra, Digital Signal Processing and Parallel Algorithms, G.H. Golub and P. Van Dooren eds, Springer NATO-ASI Series (to appear).

    Google Scholar 

  41. H. Kimura, ‘Generalized Schwarz form and lattice-ladder realizations of digital filters’, IEEE Trans. Circuits and Systems, CAS-32, pp. 1130 – 1139, 1985.

    Google Scholar 

  42. G.S. Ammar, W.B. Gragg, and L. Reichel, ‘On the eigenproblem for orthogonal matrices’, Proc. 25th IEEE Conf. Decision and Control, Athens, 1986.

    Google Scholar 

  43. W.B. Gragg, ‘The QR algorithm for unitary Hessenberg matrices’, J. Comp. Appl. Math., 16, pp. 1 – 8, 1986.

    Article  Google Scholar 

  44. G. Cybenko, ‘Computing Pisarenko frequency estimates’, Proc. Internat. Conf. Systems and Sciences, Princeton University, 1984.

    Google Scholar 

  45. L. Reichel and G. Ammar, ‘Fast approximation of dominant harmonics by solving an orthogonal eigenvalue problem’, Proc. 2nd IMA Conf. Mathematics in Signal Processing, University of Warwick, Coventry, 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Dedsarte, P., Genin, Y. (1990). On the Role of Orthogonal Polynomials on the Unit Circle in Digital Signal Processing Applications. In: Nevai, P. (eds) Orthogonal Polynomials. NATO ASI Series, vol 294. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0501-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0501-6_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6711-9

  • Online ISBN: 978-94-009-0501-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics