Skip to main content

The continuing story of 5-hydroxytryptamine receptors: a 5-HT3 receptor modulates dopamine release from rat striatal slice

  • Chapter
Book cover Cardiovascular Pharmacology of 5-Hydroxytryptamine

Abstract

To the large number of 5-HT receptors that have been catalogued [1–4] can now be added the 5-HT1D receptor, first described as a binding site [5] and recently shown to be negatively coupled to adenylyl cyclase in the calf substantia nigra [6]. Yet additional 5-HT receptors exist, not only in mammalian smooth muscles and other peripheral tissues [1, 3] but in brain as well. For example, the hippocampus has binding sites (and probably the homologous receptors) for all known 5-HT receptors [5, 7–10]. But some 5-HT-induced excitatory responses in the hippocampus cannot be attributed to any of these receptors. These include a slow depolarization of pyramidal cells which has been attributed to a decrease in a K+ current [11, 12]; a decrease in the calcium-dependent K+ current responsible for the slow after-spike hyperpolarization in pyramidal cells [11, 12]; and a transient increase in population spike amplitude [13].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bradley PB, Engel G, Feniuk W, Fozard JR, Humphrey PPA, Middlemiss DN, Mylecharane EJ, Richardson BP, Saxena PR (1986): Proposals for the classification, and nomenclature of functional receptors for 5-hydroxytryptamine. Neuropharmacology 25: 563–576.

    Article  CAS  PubMed  Google Scholar 

  2. Arvidsson L–E, Hacksell U, Glennon RA (1986): Recent advances in central 5-hydroxytryptamine receptor agonists and antagonists. Prog Drug Res 30: 365–471.

    CAS  PubMed  Google Scholar 

  3. Green JP, Maayani S (1987): Nomenclature, classification, and notation of receptors: 5-hydroxytryptamine receptors and binding sites as examples pp. 237–267 in: Black JW. Jenkinson DH Gerskowitch VP (eds), Perspectives on receptor classification, Liss: New York.

    Google Scholar 

  4. Peroutka SJ (1988): 5-Hydroxytryptamine receptor subtypes Ann Rev Neurosci 11: 45–60.

    Article  CAS  PubMed  Google Scholar 

  5. Heuring RE, Peroutka SJ (1987): Characterization of a novel 3H-5-HT binding site subtype in bovine brain membrance. J Neurosci 7: 894–903.

    CAS  PubMed  Google Scholar 

  6. Schoeffter P, Waeber C, Palacios JM, Hoyer D (1988): The 5-hydroxytryptamine 5-HT1D receptor subtype is negatively coupled to adenylate cyclase in calf substantia nigra Naunyn–Schmiedeberg’s Arch Pharmacol 337: 602–608.

    CAS  Google Scholar 

  7. Pazos A, Cortes I, Palacios JM (1985): Quantitative autoradiographic mapping of serotonin receptors in the rat brain. I. Serotonin–2 receptors. Brain Res 346: 231–249.

    Article  CAS  PubMed  Google Scholar 

  8. Pazos A, Palacios JM (1985): Quantitative autoradiographic mapping of serotonin receptors in the rat brain. II. Serotonin-1 receptors. Brain Res 346: 205–230.

    Article  CAS  PubMed  Google Scholar 

  9. Kilpatrick GJ, Jones BJ, Tyers MB (1987): The identification and distribution of the 5-HT3 receptors in rat brain using radioligand binding. Nature 330: 746–748.

    Article  CAS  PubMed  Google Scholar 

  10. Herrick-Davis K, Titeler M (1988): Detection and characterization of the serotonin 5-HT1D receptor in rat and human brain. J Neurochem 50: 1624–1631.

    Article  CAS  PubMed  Google Scholar 

  11. Colino A, Halliwell JV (1987): Differential modulation of three separate K+-conductances in hippocampal CA1 neurons by serotonin. Nature 328: 73–77.

    Article  CAS  PubMed  Google Scholar 

  12. Andrade R, Nicoll RA (1987): Pharmacologically distinct actions of serotonin on single pyramidal neurones of the rat hippocampus recorded in vitro. J Physiol (Lond.) 394: 99–124.

    CAS  Google Scholar 

  13. Beck SG, Clarke WP, Goldfarb J (1985): Spiperone differentiates multiple 5-hydroxy-tryptamine responses in rat hippocampal slices in vitro. Europ J Pharmacol 116: 195– 197.

    Article  CAS  Google Scholar 

  14. Shenker A, Maayani S, Weinstein H, Green JP (1985): Two 5-HT receptors linked to adenylate cyclase in guinea pig hippocampus are discriminated by 5-carboxamidotrypta-mine and spiperone. Eur J Pharmacol 109: 427–429.

    Article  CAS  PubMed  Google Scholar 

  15. Shenker A, Maayani S, Weinstein H, Green, JP (1987): Pharmacological characterization of two 5-hydroxytryptamine receptors coupled to adenylate cyclase in guinea pig hippocampal membranes. Mol Pharmacol 31: 357–367.

    CAS  PubMed  Google Scholar 

  16. Bonner TI, Buckley NJ, Young AC, Brann MR (1987): Identification of a family of muscarinic acetylcholine receptor genes. Science 237: 527–532.

    Article  CAS  PubMed  Google Scholar 

  17. Green JP (1987): Polypharmic antagonists—a class of their own. Trends Pharmacol Sci 8: 377–379.

    Article  CAS  Google Scholar 

  18. De Vivo M, Maayani S (1986): Characterization of the 5-hydroxytryptamine1A receptor mediated inhibition of forskolin-stimulated adenylate cyclase activity in guinea pig and rat hippocampal membranes. J Pharmacol Exp Ther 238: 248–253.

    PubMed  Google Scholar 

  19. Abramson SN, Molinoff PB (1985): Properties of beta-adrenergic receptors of cultured mammalian cells: interaction of receptors with a guanine nucleotide–binding protein in membranes prepared from L6 myoblast and from wild–type and cyc–S49 lymphoma calls. J Biol Chem 260: 14580–14588.

    CAS  PubMed  Google Scholar 

  20. Asano T, Katada T, Gilman AG, Ross, EM (1984): Activation of the inhibitory GTP– binding protein of adenylate cyclase, Gi by beta–adrenergic receptors in reconstituted phospholipid vesicles, J Biol Chem 259: 9351–9354.

    CAS  PubMed  Google Scholar 

  21. Ueda H, Harada H, Nozaki M, Katada T, Ui M, Satoh M, Takagi H (1988): Reconstitution of rat brain μ opioid receptors with purified guanine nucleotide-binding regulatory proteins, G iand Go. Proc Natl Acad Sci USA 85: 7013–7017.

    Article  CAS  PubMed  Google Scholar 

  22. Cooper DMF, Londos C, Rodbell M (1980): Adenosine receptor-mediated inhibition of rat cerebrat cortical adenylate cyclase by a GTP-dependent process. Mol Pharmacol 18: 598–601.

    CAS  PubMed  Google Scholar 

  23. Jacobs KH, Aktories K, Minuth M, Schultz G (1985): Inhibition of adenylate cyclase vol. 19 pp. 137–150, in: Cooper DMF, Seamon KB (eds), Advances in cyclic nucleotide and protein phosphorylation research , Raven Press: New York.

    Google Scholar 

  24. Andrade R, Malenka RC, Nicoll RA (1986): A G protein couples serotonin and GABA-B receptors to the same channels in hippocampus. Science 234: 1261–1265.

    Article  CAS  PubMed  Google Scholar 

  25. Clarke WP, DeVivo M, Beck SG, Maayani S, Goldfarb J (1987): Serotonin decreases population spike amplitude in hippocampal cells through a pertussis toxin substrate. Brain Res 410: 357–361.

    Article  CAS  PubMed  Google Scholar 

  26. Gilman AG (1987): G proteins: transducers of receptor-generated signals. Ann Rev Biochem 56: 615–649.

    Article  CAS  PubMed  Google Scholar 

  27. Iyengar R, Birnbaumer L (1987): Signal transduction by G-proteins. ISI Atlas of Science: Pharmacol 213–221.

    Google Scholar 

  28. Glowinski J, Cheramy A, Romo R, Barbeito L (1988): Presynaptic regulation of dopaminergic transmission in the striatum. Cell Mol Neurobiol 8: 7–17.

    Article  CAS  PubMed  Google Scholar 

  29. Costall B, Naylor RJ (1974): Stereotyped and circling behavior induced by dopaminergic agonists after lesions of the midbrain raphe nuclei. Eur J Pharmacol 29: 206–212.

    Article  CAS  PubMed  Google Scholar 

  30. Samanin R, Quattrone A, Consolo S, Ladinsky H, Algeri S (1978): Biochemical and pharmacological evidence for the interaction of serotonin with other aminergic systems in the brain pp. 383–399 in: Garattini S, Pujol JF, Samanin R (eds), Interactions between putative neurotransmitters in the brain , Raven Press: New York.

    Google Scholar 

  31. Ennis C, Kemp JD, Cox B (1981): Characterization of inhibitory 5-hydroxytryptamine receptors that modulate dopamine release in the striatum. J Neurochem 36: 1515–1520.

    Article  CAS  PubMed  Google Scholar 

  32. Muramutsu M, Tamahi-Ohashi J, Usuki C, Araki H, Chaky S, Aihara H (1988): 5-HT2 antagonists and minaprine block the 5-HT-induced inhibition of dopamine release from rat brain striatal slices. Eur J Pharmacol 153: 89–95.

    Article  CAS  PubMed  Google Scholar 

  33. Leysen JE, Eens A, Gommeren W, van Gompel P, Wynants J, Jansen PAJ (1988): Identification of nonserotonergic 3H-ketanserin binding sites associated with nerve terminals in rat brain and with platelets; relation with release of biogenic amine metabolites induced by ketanserin– and terabenazine-like drugs. J Pharmacol Exp Ther 244: 310–321.

    CAS  PubMed  Google Scholar 

  34. Costall B, Domeney AM, Naylor RJ, Tyers MB (1987): Effects of the 5-HT3 receptor antagonist, GR38032F, on raised dopaminergic activity in the mesolimbic system of the rat and marmoset brain. Br J Pharmacol 92: 881–894.

    Article  CAS  PubMed  Google Scholar 

  35. Miller JJ, Richardson TL, Fibiger HC, Mc Lennan H (1975): Anatomical and electrophysiological identification of a projection from the mesencephalic raphe to the caudate putamen in the rat brain. Brain Res 97: 133–138.

    Article  CAS  PubMed  Google Scholar 

  36. Davies J, Tongroach P. (1978): Neuropharmacological studies on the nigro–striatal and raphe–striatal system in the rat. Eur J Pharmacol 51: 91–100.

    Article  CAS  PubMed  Google Scholar 

  37. Bevan P, Bradshaw CM, Szabaldi E (1975): Effects of desipramine on neuronal responses to dopamine, noradrenaline, 5-hydroxytryptamine and acetylcholine in the caudate nucleus of the rat. Br J Pharmacol 54: 285–293.

    Article  CAS  PubMed  Google Scholar 

  38. De Simoni MG, Dal Toso G, Fodritto F, Sokola A, Algeri S (1987): Modulation of striatal dopamine metabolism by the activity of dorsal raphe serotonergic afferents. Brain Res 411: 81–88.

    Article  PubMed  Google Scholar 

  39. Besson MJ, Cheramy A, Feltz P, Glowinski J (1969): Release of newly synthesized dopamine from dopamine-containing terminals in the striatum of the rat. Proc Nat Acad Sci U.S.A. 62: 741–748.

    Article  CAS  Google Scholar 

  40. de Belleroche J, Bradford H (1980): Presynaptic control of the synthesis and release of dopamine from striatal synaptosomes: a comparison between the effects of 5-hydroxytryptamine, acetylcholine and glutamate. J Neurochem 35: 1227–1234.

    Article  PubMed  Google Scholar 

  41. Nurse B, Russel VA, Taljaard JJF (1988): Characterization of the effects of serotonin on the release of 3H-Dopamine from rat nucleus accumbens and striatal slices. Neurochem Res 13: 403–407.

    Article  CAS  PubMed  Google Scholar 

  42. Sharp T, Zetterstrom T, Christmanson L, Ungerstedt U (1986): p-Chloroamphetamine releases both serotonin and dopamine into brain dialysates in vivo. Neurosci Lett 72: 320–324.

    Article  CAS  Google Scholar 

  43. Waldmeier PC, Delini-Stula AA (1979): Serotonin-dopamine interactions in the nigrostri-atal system. Eur J Pharmacol 55: 363–373.

    Article  CAS  PubMed  Google Scholar 

  44. Hagan RM, Butler A, Hill JM, Jordan CC, Ireland SJ, Tyers MB (1987): Effect of the 5-HT3 receptor antagonist, GR38032F, on responses to injection of a neurokinin agonist into the ventral tegmental area of the rat brain. Eur J Pharmacol 138: 303–305.

    Article  CAS  PubMed  Google Scholar 

  45. Hamon M, Fattaccini C-M, Adrien J, Gallissot M-C, Martin P, Gozlan H (1988): Alteration of central serotonin and dopamine turnover in rats treated with ipsapirone and other 5-hydroxytryptamine]A agonists with potential anxiolytic properties. J Pharmacol Exp Ther 246: 745–752.

    CAS  PubMed  Google Scholar 

  46. Agren H, Mefford IN, Rudorfer MV, Linnoila M, Potter WZ (1986): Interacting neurotransmitter systems. A non-experimental approach to the 5HIAA-HVA correlation in human CSF. J Phychiat Res 20: 175–193.

    Article  CAS  Google Scholar 

  47. Richardson BP, Buchheit KH (1988): The pharmacology, distribution and function of 5-HT3 receptors pp. 465–506, in: Osborne NN, Hamon M (eds), Neuronal Serotonin, John Wiley & Sons New York.

    Google Scholar 

  48. Hoyer D, Neijt HC (1987): Identification of serotonin 5-HT3 recognition sites by radioligand binding in NG 108–15 neuroblastoma-glioma cells. Eur J Pharmacol 143: 291–292.

    Article  CAS  PubMed  Google Scholar 

  49. Barnes NM, Costall B, Naylor RJ (1988): [3H]-Zacopride identifies 5-HT3 binding sites in rat entorhinal cortex. Br J Pharmacol 94: 391 P.

    Google Scholar 

  50. Peroutka SJ, Hamik A (1988): [3H]Quipazine labels 5-HT3 recognition sites in rat cortical membranes. Eur J Pharmacol 148:297–299.

    Article  CAS  PubMed  Google Scholar 

  51. Waeber C, Dixon K, Hoyer D, Palacios JM (1988): Localisation by autoradiography of neuronal 5-HT3 receptors in the mouse CNS. Eur J Pharmacol 151: 351–352.

    Article  CAS  PubMed  Google Scholar 

  52. Watling KJ (1988): Radioligand binding studies identify 5-HT3 recognition sites in neuroblastoma cell lines and mammalian CNS. Trends Pharmacol Sci 9: 227–229.

    Article  CAS  PubMed  Google Scholar 

  53. Misu Y, Goshima Y, Ueda H, Kubo T (1985): Presynaptic inhibitory dopamine receptors on noradrenergic nerve terminals: analysis of biphasic actions of dopamine and apomorphine on the release of endogenous norepinephrine in rat hypothalamic slices. J Pharmacol Exp Ther 235: 771–777.

    CAS  PubMed  Google Scholar 

  54. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951): Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265–273.

    CAS  PubMed  Google Scholar 

  55. Richardson BP, Engel G, Donatsch P, Stadler PA (1985): Identification of serotonin M-receptor subtypes and their specific blockade by a new class of drugs. Nature 316: 126–131.

    Article  CAS  PubMed  Google Scholar 

  56. Andrews PLR, Rapeport WG, Sanger GJ (1988): Neuropharmacology of emesis induced by anti-cancer therapy. Trends Pharmacol Sci 9: 334–341.

    Article  CAS  PubMed  Google Scholar 

  57. Jones BJ, Costall B, Domeney AM, Kelly ME, Naylor RJ, Oakley NR, Tyers MB (1988): The potential anxiolytic activity of GR38032F, a 5-HT3-receptor antagonist. Br J Pharmacol 93: 985–993.

    Article  CAS  PubMed  Google Scholar 

  58. Carboni E, Acquas E, Leone P, Perezzani L, Di Chiara G (1988): 5-HT3 receptor antagonists block morphine- and nicotine-induced place-preference conditioning. Eur J Pharmacol 151,159–160.

    Article  CAS  PubMed  Google Scholar 

  59. Sellers EM, Kaplan HL, Lawrin MO, Somer G, Naranjo CA, Frecker RC (1988): The 5-HT3 antagonist GR38032F decreases alcohol consumption in rats. Soc Neurosci Abstr 14: 41.

    Google Scholar 

  60. Imperato A, Angelucci L (1988): 5-HT3 receptors control dopamine release in the limbic system of freely-moving rats. Soc Neurosci Abstr 14: 611.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Blandina, P., Goldfarb, J., Green, J.P. (1990). The continuing story of 5-hydroxytryptamine receptors: a 5-HT3 receptor modulates dopamine release from rat striatal slice. In: Saxena, P.R., Wallis, D.I., Wouters, W., Bevan, P. (eds) Cardiovascular Pharmacology of 5-Hydroxytryptamine. Developments in CardioCardiovascular Pharmacology of 5-Hydroxytryptamine, vol 106. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0479-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0479-8_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6701-0

  • Online ISBN: 978-94-009-0479-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics