Skip to main content

The role of 5-hydroxytryptamine in the regulation of sympathetic nerve discharge

  • Chapter
  • 20 Accesses

Abstract

A large amount of evidence has accumulated to indicate that central serotonergic (5-hydroxytryptamine, 5-HT) neurons participate in the regulation of sympathetic nerve discharge (SND) and, therefore, blood pressure. Areas of the brain stem and spinal cord involved in vasomotor control are heavily innervated by 5-HT neurons [1, 2]. The area of the midline medulla that contains 5-HT neurons which project to autonomic nuclei corresponds to the classic medullary depressor region [3]. The close association between 5-HT descending neurons and midline sites that elicit vasodepressor responses when electrically stimulated has led to the conclusion that descending 5-HT medullospinal pathways inhibit sympathetic preganglionic neurons [4–7]. The findings that stimulation of presumed 5-HT-containing axons in the dorsolateral funiculus of the spinal cord inhibits sympathetic activity supports this hypothesis [8]. Early pharmacological studies based on the effects of 5-HT precursors and synthesis inhibitors support the concept that 5-HT neurons normally inhibit transmission in central sympathetic pathways. For example, administration of the 5-HT precursor 5-hydroxytryptophan results in a decrease in mean arterial blood pressure (MAP), heart rate (HR) and SND [9]. Furthermore, precursor administration produces a dose-dependent depression of spinal sympathetic reflexes. Taken together, these data suggest that central 5-HT neurons inhibit sympathetic neurons. However, a great deal of data generated in our laboratory suggests that 5-HT neurons excite rather than inhibit sympathetic neurons in the central nervous system. This chapter is intended to review this data with particular emphasis paid to the type of 5-HT receptor subtypes involved in the regulation of sympathetic neurons.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fuxe K (1965): Evidence for the existence of monoamine neurons in the CNS. IV. The distribution of monoamine terminals in the CNS. Acta Physiol Scand 64 (suppl. 247): 38 – 85.

    Google Scholar 

  2. Bobillier P, Sequin S, Petitjean F, Salvert D, Touret M, Jouvet M (1976): The raphe nuclei of the cat brain stem: A topographical atlas of their efferent projections as revealed by autoradiography. Brain Res 113: 449 – 486.

    Article  CAS  PubMed  Google Scholar 

  3. Wang SC, Ranson SW (1939): Autonomic responses to electrical stimulation of the lower brain stem. J Comp Neurol 71: 437 – 455.

    Article  Google Scholar 

  4. Cabot JB, Wild J, Cohen DN (1979): Raphe inhibition of sympathetic preganglionic neurons. Science 203: 184 – 186.

    Article  CAS  PubMed  Google Scholar 

  5. Coote JH, Macleod VH (1974): The influence of bulbospinal monoaminergic pathways on sympathetic nerve activity. J Physiol (London) 241: 453 – 475.

    CAS  Google Scholar 

  6. Gilbey MP, Coote JH, Macleod VH, Peterson DF (1981): Inhibition of sympathetic activity by stimulating in the raphe nuclei and the role of 5-hydroxytryptamine in this effect. Brain Res 226: 131 – 142.

    Article  CAS  PubMed  Google Scholar 

  7. Howe PRC (1985): Blood pressure control by neurotransmitters in the medulla oblongata and spinal cord. J Auton Nerv Syst 12: 95 – 115.

    Article  CAS  PubMed  Google Scholar 

  8. Coote JH, Macleod VH (1975): The spinal route of sympathoinhibitory pathways descending from the medulla. Pflugers Arch 359: 335 – 347.

    Article  CAS  PubMed  Google Scholar 

  9. Kuhn DM, Wolf WA, Lovenberg W (1980): Review of the role of the central serotonergic neuronal system in blood pressure. Hypertension 2: 243 – 255.

    Article  CAS  PubMed  Google Scholar 

  10. McCall RB, Humphrey SJ (1982): Involvement of serotonin in the central regulation of blood pressure: evidence for a facilitation effect on sympathetic nerve activity. J Pharmacol exp Therap 222: 94 – 102.

    CAS  Google Scholar 

  11. McCall RB, Harris LT (1987): Sympathetic alterations after midline medullary raphe lesions. Am J Physiol 253: R91 – R107.

    Google Scholar 

  12. Aghajanian GK, Wang RY (1978): Physiology and pharmacology of central serotonergic neurons, pp. 171–183 in: Lipton MA, DiMascio A, Killam KF (eds), Psychopharmacology: A Generation of Progress. New York: Raven Press.

    Google Scholar 

  13. Loewy AD (1981): Raphe pallidus and raphe obscurus projections to the intermediolateral cell column in the rat. Brain Res 222: 129 – 133.

    Article  CAS  PubMed  Google Scholar 

  14. Loewy AD, McKellar S (1981): Serotonergic projections from the ventral medulla to the intermediolateral cell column in the rat. Brain Res 211: 146 – 152.

    Article  CAS  PubMed  Google Scholar 

  15. McCall RB (1983): Serotonergic excitation of sympathetic preganglionic neurons: a microiontophoretic study. Brain Res 289: 121 – 127.

    Article  CAS  PubMed  Google Scholar 

  16. McCall RB (1984): Evidence for a serotonergically mediated sympathoexcitatory response to stimulation of medullary raphe nuclei. Brain Res 311: 131 – 139.

    Article  CAS  PubMed  Google Scholar 

  17. McCall RB, Humphrey SJ (1985): Evidence for GABA mediation of sympathetic inhibition evoked from midline medullary depressor sites. Brain Res 339: 356 – 361.

    Article  CAS  PubMed  Google Scholar 

  18. McCall RB, Humphrey SJ (1985): Evidence for GABA mediation of sympathetic inhibition evoked from midline medullary depressor sites. Brain Res 339: 356 – 361.

    Article  CAS  PubMed  Google Scholar 

  19. McCall RB, Patel BN, Harris LT (1987): Effects of serotonin1 and serotonin2 receptor agonists and antagonists on blood pressure, heart rate and sympathetic nerve activity. J Pharmacol exp Therap 242: 1152 – 1159.

    CAS  Google Scholar 

  20. McCall RB, Schuette MR (1984): Evidence for the alpha-1 receptor-mediated central sympathoinhibitory action of ketanserin./ Pharmacol exp Therap 228: 704 – 710.

    CAS  Google Scholar 

  21. McCall RB, Humphrey SJ (1981): Evidence for a central depressor action of postsynaptic alpha-1 adrenergic antagonists. J Auton Nerv Syst 3: 9 – 23.

    Article  CAS  PubMed  Google Scholar 

  22. McCall RB, Harris LT (1987): Characterization of the central sympathoinhibitory action of ketanserin. J Pharmacol exp Therap 241: 736 – 740.

    CAS  Google Scholar 

  23. Fozard JR, Mir AK, Middlemiss DN (1987): The cardiovascular response to 8-hydroxy- 2-(di-n-propylamino)tetralin (8-OH-DPAT) in the rat: site of action and pharmacological analysis. J Cardiovasc Pharmacol 9: 328 – 347.

    Article  CAS  PubMed  Google Scholar 

  24. Ramage AG, Fozard JR (1987): Evidence that the putative 5-HT1A receptor agonists, 8-OH-DPAT and isapirone, have a central hypotensive action that differs from that of clonidine in anaesthetized cats. Europ J Pharmacol 138: 179 – 191.

    Article  CAS  Google Scholar 

  25. Verge D, Daval G, Patey A, Gozlan H, El Mestikaway S, Hamon M (1985): Presynaptic 5-HT autoreceptors on serotonergic cell bodies and/or dendrites but not terminals are of the 5-HT1A subtype. European J Pharmacol 113: 463 – 464.

    Article  CAS  Google Scholar 

  26. Chiang CY, Pan ZZ (1985): Differential responses of serotonergic and non-serotonergic neurons in nucleus raphe magnus to systemic morphine in rats. Brain Research 337: 146 – 150.

    Article  CAS  PubMed  Google Scholar 

  27. Wei JB, Chiang CC (1986): Responses of serotonergic and non-serotonergic neurons in the rat nucleus raphe magnus to systemic lysergic acid diethylamide. Neuroscience Research 3: 268 – 273.

    Article  CAS  PubMed  Google Scholar 

  28. Heym J, Steinfels GF, Jacobs BL (1982): Activity of serotonin-containing neurons in the nucleus raphe pallidus of freely moving cats. Brain Research 251: 259 – 276.

    Article  CAS  PubMed  Google Scholar 

  29. Wessendorf MW, Anderson EG (1983): Single unit studies of identified bulbospinal serotonergic units. Brain Research 279: 93 – 103.

    Article  CAS  PubMed  Google Scholar 

  30. Heym J, Steinfels GF, Jacobs BL (1982): Medullary serotonergic neurons are insensitive to 5-MeODMT and LSD. European J Pharmacol 81: 677 – 680.

    Article  CAS  Google Scholar 

  31. Jacobs BL, Heym J, Rasmussen K (1983): Raphe neurons: firing rate correlates with size of drug response. European J Pharmacol 90: 275 – 278.

    Article  CAS  Google Scholar 

  32. Wang RY, Aghajanian GK (1977): Antidromically identified serotonergic neurons in the rat midbrain raphe: evidence for collateral inhibition. Brain Research 132: 186 – 193.

    Article  CAS  PubMed  Google Scholar 

  33. Wang RY, Aghajanian GK (1982): Correlative firing patterns of serotonergic neurons in rat dorsal raphe nucleus. J Neuroscience 2: 11 – 16.

    CAS  Google Scholar 

  34. McCall RB, Clement ME (1988): Identification of serotonergic and sympathetic neurons in medullary raphe nuclei. Brain Research 477: 172 – 182.

    Article  Google Scholar 

  35. Morilak DA, Fornal C, Jacobs BL (1986): Single unit activity of noradrenergic neurons in locus coeruleus and serotonergic neurons in the nucleus raphe dorsalis of freely moving cats in relation to the cardiac cycle. Brain Research 399: 262 – 270.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

McCall, R.B. (1990). The role of 5-hydroxytryptamine in the regulation of sympathetic nerve discharge. In: Saxena, P.R., Wallis, D.I., Wouters, W., Bevan, P. (eds) Cardiovascular Pharmacology of 5-Hydroxytryptamine. Developments in CardioCardiovascular Pharmacology of 5-Hydroxytryptamine, vol 106. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0479-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0479-8_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6701-0

  • Online ISBN: 978-94-009-0479-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics