Skip to main content

5-Hydroxytryptamine and related drugs and autonomic ganglia

  • Chapter
Cardiovascular Pharmacology of 5-Hydroxytryptamine

Abstract

A cardiovascular response to 5-HT will be evoked if, amongst other actions, the amine increases impulse traffic in sympathetic neurones causing vasoconstriction or in autonomic neurones which alter cardiac output. In addition, cardiovascular responses will be modified if 5-HT modulates the output of transmitter at the neuroeffector junction. Cardiovascular actions may also result from 5-HT affecting the afferent limb of reflex pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wallis DI (1981): Neuronal 5-hydroxytryptamine receptors outside the central nervous system. Life Sci 29: 2345–2355.

    Article  CAS  PubMed  Google Scholar 

  2. Fozard JR (1984): Neuronal 5-HT receptors in the periphery. Neuropharmacology 23: 1473–1486.

    Article  CAS  PubMed  Google Scholar 

  3. Richardson BP, Engel G (1986): The pharmacology and function of 5-HT3, receptors. Trends Neurosci 9: 424–428.

    Article  CAS  Google Scholar 

  4. Wallis DI, Dun NJ (1989): Presynaptic action of 5-hydroxytryptamine on autonomic ganglia, (in press) in: Feigenbaum JJ, Hanani M (eds), Presynaptic regulation of neurotransmitter release. London and Tel Aviv: Freund Publishing Co.

    Google Scholar 

  5. Wallis, DI (1989): Interaction of 5-HT with autonomic and sensory neurones, pp. 220–246 in Fozard JR, (ed), The peripheral actions of 5-hydroxytryptamine. Oxford: Oxford University Press.

    Google Scholar 

  6. Wallis DI, North RA (1978): Intracellular recording of responses of rabbit superior cervical ganglion cells to 5-hydroxytryptamine applied by iontophoresis. Neuropharmacology 17: 1023–1028.

    Article  CAS  PubMed  Google Scholar 

  7. Skok V, Selyanko AA (1979): Acetylcholine and serotonin receptors in mammalian sympathetic ganglion neurones, pp. 248–253 in: Brooks CMcC, Koizumi K, Sato A (eds), Integrative functions of the autonomic nervous system. Tokyo: University of Tokyo Press.

    Google Scholar 

  8. Macrae IM, Furness JB, Costa M (1986): Distribution of subgroups of noradrenaline neurones in the coeliac ganglion of the guinea-pig. Cell and Tissue Res 244: 173–180.

    Article  CAS  Google Scholar 

  9. Cassell JF, McLachlan EM (1987): Two calcium-activated potassium conductances in a subpopulation of coeliac neurones of guinea-pig and rabbit. J Physiol 394: 331–349.

    CAS  PubMed  Google Scholar 

  10. McLachlan EM (1987): Functional specialization of membrane properties of sympathetic post-ganglionic neurones, pp. 1–10 in: Polosa C, Calaresu F (eds), Organization of the Autonomic Nervous System: Central and peripheral mechanisms. New York: Alan Liss.

    Google Scholar 

  11. Bradley PB, Engel G, Fenuik W, Fozard J, Humphrey PPA Middlemiss DN, Mylecharane EJ, Richardson BP, Saxena PR (1986): Proposals for the classification and nomenclature of functional receptors for 5-hydroxytryptamine. Neuropharmacology 25: 563–576.

    Article  CAS  PubMed  Google Scholar 

  12. Trendelenburg U (1956): The action of 5-hydroxytryptamine on the nictitating membrane and on the superior cervical ganglion of the cat. Br J Pharmacol Chemother 11: 74–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. DeGroat WC, Voile RL (1966): The actions of the catecholamines on transmission in the superior cervical ganglion of the cat.J Pharmacol exp Ther 154: 1–13.

    Google Scholar 

  14. Haefely W (1974): The effects of 5-hydroxytryptamine and some related compounds on the cat superior cervical ganglion in situ. Naunyn-Schmiedeberg’s Arch Pharmacol 281: 145–165.

    Article  CAS  Google Scholar 

  15. DeGroat WC, Lalley PM (1973): Interaction between picrotoxin and 5-hydroxytryptamine in the superior cervical ganglion of the cat. Br J Pharmacol 48: 233–244.

    Article  PubMed  Google Scholar 

  16. Wallis DI, Woodward B (1974): The facilitatory actions of 5-hydroxytryptamine and bradykinin in the superior cervical ganglion of the rabbit. Br J Pharmacol 51: 521–531.

    Article  CAS  PubMed  Google Scholar 

  17. Hertzler EC (1961): 5-hydroxytryptamine and transmission in sympathetic ganglia. Br J Pharmacol Chemother 17:406–413.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Dun NJ, Karczmar AG (1981): Evidence for a presynaptic inhibitory action of 5-hydroxytryptamine in a mammalian sympathetic ganglion. J Pharmacol exp Ther 217: 714–718.

    CAS  PubMed  Google Scholar 

  19. Hirai K, Koketsu K (1980): Presynaptic regulation of the release of acetylcholine by 5-hydroxytryptamine. Br J Pharmacol 70: 499–500.

    Article  CAS  PubMed  Google Scholar 

  20. Elliott P, Marsh SJ, Brown DA (1989): Inhibition of Ca-spikes in rat preganglionic cervical sympathetic nerves by sympathomimetic amines. Br J Pharmacol 96: 65–76.

    Article  CAS  PubMed  Google Scholar 

  21. Ma RC, Dun NJ (1986): Excitation of lateral horn neurons of the neonatal rat spinal cord by 5-hydroxytryptamine. Developmental Brain Research 24: 89–98.

    Article  CAS  Google Scholar 

  22. De Groat WC, Ryall RW (1967): An excitatory action of 5-hydroxytryptamine on sympathetic preganglionic neurones. Exp Brain Res 3: 299–305.

    Article  PubMed  Google Scholar 

  23. Coote JH, MacLeod VH, Fleetwood-Walker S, Gilbey MP (1981): The response of individual sympathetic preganglionic neurones to microelectrophoretically applied endogenous monoamines. Brain Res 215: 135–145.

    Article  CAS  PubMed  Google Scholar 

  24. Kadzielawa K (1983): Antagonism of the excitatory effects of 5-hydroxytryptamine on sympathetic preganglionic neurones and neurones activated by visceral afferents. Neuropharmacology 22: 19–27.

    Article  CAS  PubMed  Google Scholar 

  25. McCall RB (1983): Serotonergic excitation of sympathetic preganglionic neurones: a microiontophoretic study. Brain Res 289: 121–127.

    Article  CAS  PubMed  Google Scholar 

  26. Dahlstrom A, Fuxe K (1964): Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brainstem neurons. Acta physiol Scand 62, Suppl. 232: 1–55.

    Google Scholar 

  27. Dahlstrom A, Fuxe K (1965): Evidence for the existence of monoamine-containing neurons in the central nervous system. II. Experimentally-induced changes in the intraneuronal amine levels of bulbospinal neuron systems. Acta physiol Scand 64, Suppl. 247: 1–36.

    Google Scholar 

  28. Wallis DI, Woodward B (1975): Membrane potential changes induced by 5-hydroxytryptamine in the rabbit superior cervical ganglion. Br J Pharmacol 55, 199–212.

    Article  CAS  PubMed  Google Scholar 

  29. Wallis DI, North RA (1978): Intracellular recording of responses of rabbit superior cervical ganglion cells to 5-hydroxytryptamine applied by iontophoresis. Neuropharmacology 17, 1023–1028.

    Article  CAS  PubMed  Google Scholar 

  30. Ireland SJ, Straughan DW, Tyers MB (1982): Antagonism by metoclopramide and quipazine of 5-hydroxytryptamine-induced depolarizations of the rat isolated vagus nerve. Br J Pharmacol 75: 16 P.

    Google Scholar 

  31. Brittain RT, Butler A, Coates H, Fortune DH, Hagan R, Hill JM, Humber DC, Humphrey PPA, Hunter DC, Ireland SJ, Jack D, Jordan CC, Oxford A, Tyers MB (1987): GR 38032F, a novel selective 5-HT3 receptor antagonist. Br J Pharmacol 90: 87 P.

    Google Scholar 

  32. Akasu T, Hasuo H, Tokimasa T (1987): Activation of 5-HT3 receptor subtypes causes rapid excitation of rabbit parasympathetic neurones. Br J Pharmacol 91: 453–455.

    Article  CAS  PubMed  Google Scholar 

  33. Guharay F, Usherwood PNR (1981): Characterisation of the effects of 5-hydroxytrypta- mine on NIE-115 neuroblastoma cells. Br J Pharmacol 74: 294–295 P.

    Google Scholar 

  34. Neijt HC, Vijverberg HPM, van den Bercken J (1986): The dopamine response in mouse neuroblastoma cells is mediated by serotonin 5-HT3 receptors. Eur J Pharmacol 127: 271.

    Article  CAS  PubMed  Google Scholar 

  35. Peters J, Usherwood PNR (1983): 5-hydroxytryptamine responses of murine neuroblastoma cells. Ions and putative antagonists. Br J Pharmacol 80: 532P.

    Google Scholar 

  36. Neijt HC, Te Duits IJ, Vijverberg HPM (1988): Pharmacological characterisation of serotonin 5-HT3 receptor-mediated electrical response in cultured mouse neuroblastoma cells. Neuropharmacology 27: 301–307.

    Article  CAS  PubMed  Google Scholar 

  37. Lambert JJ, Peters JA, Hales TG, Dempster J (1989): The properties of 5-HT3 receptors in clonal cell lines studied by patch-clamp techniques. Br J Pharmacol 97: 27–40.

    Article  CAS  PubMed  Google Scholar 

  38. Hoyer D, Neijt HC (1988): Identification of serotonin 5-HT3 recognition sites in membranes of NIE-115 neuroblastoma cells by radioligand binding. Mol. Pharmacol 33: 303–309.

    CAS  PubMed  Google Scholar 

  39. Guharay F, Ramsay RL, Usherwood PNR (1985): 5-hydroxytryptamine-activated single- channel currents recorded from murine neuroblastoma cells. Brain Res 340:325–332.

    Article  CAS  PubMed  Google Scholar 

  40. Machova J, Boska D (1969): The effects of 5-hydroxytryptamine, dimethylphenylpipera-zinium and acetylcholine on transmission and surface potential in the cat sympathetic ganglion. Eur J Pharmacol 7, 152–158.

    Article  CAS  PubMed  Google Scholar 

  41. Wallis DI, Dun JN (1988): A comparison of fast and slow depolarizations evoked by 5-HT in guinea-pig coeliac ganglion cells in vitro. Br J Pharmacol 93: 110–120.

    Article  CAS  PubMed  Google Scholar 

  42. Wallis DI, Dun NJ (1987): Fast and slow depolarizing responses of guinea-pig coeliac ganglion cells to 5-hydroxytryptamine. J Auton Nerv System 21: 185–194.

    Article  CAS  Google Scholar 

  43. Kiraly M, Ma RC, Dun NJ (1983): Serotonin mediates a slow excitatory potential in mammalian coeliac ganglion. Brain Res 275: 378–383.

    Article  CAS  PubMed  Google Scholar 

  44. Dun NJ, Kiraly M, Ma RC (1984): Evidence for a serotonin-mediated slow excitatory potential in the guinea-pig coeliac ganglia. J Physiol 351: 61–76.

    CAS  PubMed  Google Scholar 

  45. Ireland SJ (1987): Origin of 5-hydroxytryptamine-induced hyperpolarization of the rat superior cervical ganglion and vagus nerve. Br J Pharmacol 92: 407–416.

    Article  CAS  PubMed  Google Scholar 

  46. Ireland SJ, Jordan CC (1987): Pharmacological characterization of 5-hydroxytryptamine- induced hyperpolarization of the rat superior cervical ganglion. Br J Pharmacol 92: 417–427.

    Article  CAS  PubMed  Google Scholar 

  47. Akasu T, Kirai K, Koketsu K (1981): 5-hydroxytryptamine controls ACh-receptor sensitivity of bullfrog sympathetic ganglion cells. Brain Res 211:217–220.

    Article  CAS  PubMed  Google Scholar 

  48. Koketsu K, Akasu T, Miyagawa M, Hirai K (1982): Modulation of nicotinic transmission by biogenic amines in bullfrog sympathetic ganglia. J. Auton Nerv System 6: 47–53.

    Article  CAS  Google Scholar 

  49. Nash HL, Wallis DI (1981): Effects of divalent cations on responses of a sympathetic ganglion to 5-hydroxytryptamine and l,l-dimethyl-4-phenyl piperazinium. Br J Pharmacol 73: 759–772.

    Article  CAS  PubMed  Google Scholar 

  50. Adler-Graschinsky E (1983): Dual presynaptic effects of 5-hydroxytryptamine on peripheral noradrenergic synapses. J Auton Pharmacol 3: 303–315.

    Article  CAS  PubMed  Google Scholar 

  51. Elliott P, Wallis DI (1988): 5-HT depolarizations of rabbit cervical sympathetic axons: mediation by 5-HT3B receptors? Br J Pharmacol 93:93P.

    Article  Google Scholar 

  52. Elliott P, Wallis DI (1988): The depolarizing action of 5-hydroxytryptamine on rabbit isolated preganglionic cerivcal sympathetic nerves. Naunyn-Schmiedeberg’s Arch Pharmacol 338:608–615.

    Article  CAS  Google Scholar 

  53. Fozard JR, Mobarok Ali ATM (1978): Receptors for 5-hydroxytryptamine on the sympathetic nerves of the rabbit heart. Naunyn-Schmiedeberg’s Arch Pharmacol 301: 223–235.

    Article  CAS  Google Scholar 

  54. Gyermek L (1962): Action of 5-hydroxytryptamine on the urinary bladder of the dog. Arch Int Pharmacod Ther 87: 137–144.

    Google Scholar 

  55. Vanov S (1965): Responses of the rat urinary bladder in situ to drugs and to nerve stimulation. Br J Pharmacol 24: 591–600.

    CAS  Google Scholar 

  56. Saum WR, De Groat WC (1973): The actions of 5-hydroxytryptamine on the urinary bladder and on vesical autonomic ganglia in the cat. J Pharmacol Exp Ther 185: 70–83.

    CAS  PubMed  Google Scholar 

  57. Saxena PR, Heiligers J, Mylecharane EJ, Tio R (1985): Excitatory 5-hydroxytryptamine receptors in the cat urinary bladder are of the M- and 5-HT2 type. J Auton Pharmacol 5: 101–107.

    Article  CAS  PubMed  Google Scholar 

  58. Tatsumi H, Katayama Y (1987): The actions of 5-hydroxytryptamine in the rabbit ciliary ganglion. J Auton Nerv System 20: 137–145.

    Article  CAS  Google Scholar 

  59. Burnstock G, Cocks T, Crowe R, Kasakov K (1978): Purinergic innervation of the guinea-pig urinary bladder. Br J Pharmacol 63: 125–138.

    Article  CAS  PubMed  Google Scholar 

  60. Aas P (1983): Serotonin-induced release of acetylcholine from neurons in the bronchial smooth muscle of the rat. Acta physiol Scand 117: 477–480.

    Article  CAS  PubMed  Google Scholar 

  61. Fozard JR (1984): MDL 72222: A potent and highly selective antagonist at neuronal 5-hydroxytryptamine receptors. Naunyn-Schmiedeberg’s Arch Pharmacol 326: 36–44.

    Article  CAS  Google Scholar 

  62. Holt SE, Cooper M, Wyllie JH (1986): On the nature of the receptor mediating the action of 5-hydroxytryptamine in potentiating responses of the mouse urinary bladder strip to electrical stimulation. Naunyn-Schmiedeberg’s Arch Pharmacol 334: 333–340.

    Article  CAS  Google Scholar 

  63. Garattini S, Valzelli L (1965): Serotonin. Elsevier, Amsterdam.

    Google Scholar 

  64. Franzen F, Eysell K (1969): Biologically active amines found in man. Pergamon, Oxford.

    Google Scholar 

  65. Fozard JR (1985): “Vascular neuroeffector mechanisms”, pp. 321. Elsevier, Amsterdam.

    Google Scholar 

  66. Johnson AR, Erdos EG (1973): Release of histamine from mast cells by vasoactive peptides. Proc Soc Exp Biol and Med 142: 1252–1256.

    Article  CAS  Google Scholar 

  67. Verhofstad AAJ, Steinbusch HWM, Penke B, Varga J, Joosten HWJ (1981): Serotonin- immunoreactive cells in the superior cervical ganglion of the rat. Evidence for the existence of separate serotonin- and catecholamine-containing small ganglionic cells. Brain Res 212: 39–49.

    Article  CAS  PubMed  Google Scholar 

  68. Neel DS, Parsons RL (1986): Catecholamine, serotonin and substance P-like peptide containing intrinsic neurones in the mud puppy parasympathetic cardiac ganglion. J Neurosci 6: 1970–1975.

    CAS  PubMed  Google Scholar 

  69. Moskowitz MA, Reinhard JF, Romero J, Melamed E, Pettibone DJ (1979): Neurotransmitters and the fifth cranial nerve. Is there a relation to the headache phase of migraine? Lancet ii, 883–885.

    Google Scholar 

  70. Jule Y, Krier J, Szurszewski JH (1983): Patterns of innervation of neurones in the inferior mesenteric ganglion of the cat.J Physiol 344: 293–304.

    CAS  Google Scholar 

  71. Engel G, Gothert M, Müller-Schweinitzer E, Schlicker E, Sistonen L, Stadler PA (1983): Evidence for common pharmacological properties of [3H] 5-hydroxytryptamine binding sites, presynaptic 5-hydroxytryptamine autoreceptors in CNS and inhibitory presynaptic 5-hydroxytryptamine receptors on sympathetic nerves. Naunyn Schmiedeberg’s Arch Pharmacol 324: 116–124.

    Article  CAS  Google Scholar 

  72. Charlton KG, Bond RA, Clarke DE (1986): An inhibitory prejunctional 5-hydroxytrypta-mine-l-like receptor in the isolated perfused rat kidney; apparent distinction from the 5-hydroxytryptamine-lA, 5-hydroxytryptamine-IB and 5-hydroxytryptamine-lC subtypes. Naunyn-Schmiedeberg’s Arch Pharmacol 332: 8–15.

    Article  CAS  Google Scholar 

  73. Fozard JR, Kilbinger H (1985): 8-OH-DPAT inhibits transmitter release from guinea-pig enteric cholinergic neurones by activating 5-HT1A receptors. Br J Pharmacol 86:60IP.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wallis, D.I., Elliott, P. (1990). 5-Hydroxytryptamine and related drugs and autonomic ganglia. In: Saxena, P.R., Wallis, D.I., Wouters, W., Bevan, P. (eds) Cardiovascular Pharmacology of 5-Hydroxytryptamine. Developments in CardioCardiovascular Pharmacology of 5-Hydroxytryptamine, vol 106. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0479-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0479-8_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6701-0

  • Online ISBN: 978-94-009-0479-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics