Skip to main content

Light-limited algal growth in Lake Loosdrecht: steady state studies in laboratory scale enclosures

  • Conference paper
Trophic Relationships in Inland Waters

Part of the book series: Developments in Hydrobiology ((DIHY,volume 53))

  • 71 Accesses

Abstract

Phytoplankton growth in the shallow, turbid Lake Loosdrecht (The Netherlands) is importantly influenced by light availability, and thus the concentrations of the various light-attenuating materials. The system is highly eutrophic and supports an algal biomass of ca. 160 mg Chl m −3. A model is proposed here which predicts algal growth in the lake as a function of the light received and subsequent attenuation in the water column by phytoplankton, tripton and background colour. The model is based on an energy balance which relates growth rate to the ‘true’ growth yield on light energy and the energy demand for cell maintenance. The coefficients for energy conversion (Y = 0.002 gDW kJ −1) and cell maintenance (µe = 0.031 day−1) were determined from steady state growth kinetics of Prochlorothrix hollandica in light-limited laboratory flow systems with the same depth as the lake and receiving summer average conditions of irradiance. Light attenuation by phytoplankton and tripton were quantified using specific attenuation coefficients: 0.011 m2 mg −1 Chl for the phytoplankton and 0.23 m2 g −1 DW for tripton.

The growth studies demonstrated that Lake Loosdrecht can support a much higher algal biomass in the absence of non-algal particulate matter. The proposed model is used to predict chlorophyll a concentrations in dependence on growth rate and levels of tripton. Since approximately 75% of the sestonic dry weight in Lake Loosdrecht may be attributed to tripton, it is concluded that the algal biomass is markedly lowered by the abundance of tripton in the water column. A knowledge of the sources and fate of tripton in the lake is thus of fundamental importance in modelling phytoplankton dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Atlas, D. & T. T. Bannister, 1980. Dependence of mean spectral extinction coefficient of phytoplankton on depth, water color, and species. Limnol. Oceanogr. 25: 157–159.

    CAS  Google Scholar 

  • Bannister, T. T., 1974. A general theory of steady state phytoplankton growth in a nutrient saturated mixed layer. Limnol Oceanogr. 19: 13–30.

    Article  Google Scholar 

  • Bannister, T. T., 1979. Quantitative description of steady state, nutrient-saturated algal growth, including adaptation. Limnol. Oceanogr. 24: 76–96.

    CAS  Google Scholar 

  • Burger-Wiersma, T., M. Veenhuis, H. Korthals, C. C. M. Van Der Wiel & L. R. Mur, 1986. A new prokaryote containing chlorophylls a and b. Nature, 320: 262–264.

    Article  CAS  Google Scholar 

  • Flik, B. J. G. & A. Keyzer, 1981. Estimation of the primary production in the Lake Maarsseveen I with an incubator technique. Hydrobiol. Bull., 15: 41–50.

    Article  Google Scholar 

  • Gons, H. J., 1977. On the light-limited of Scenedesmus protuberans Fritsch. Thesis, University of Amsterdam, 120 pp.

    Google Scholar 

  • Gons, H. J., 1987. De relatie tussen doorzicht en slib in de Loosdrechtse Plassen in verband met de zwemwaternorm. Limnological Institute, Niewersluis. WQL-report 1987–3.

    Google Scholar 

  • Gons, H. J., R. D. Gulati & L. Van Liere, 1986a. The eutrophic Loosdrecht Lakes: current ecological research and restoration perspectives. Hydrobiol. Bull. 20: 61–75.

    Article  CAS  Google Scholar 

  • Gons, H. J. & L. R. Mur, 1975. An energy balance for algal populations in light-limiting conditions. Verh. int. Ver. Limnol. 19: 2729–2733.

    Google Scholar 

  • Gons, H. J. & M. Rijkeboer, 1990. Algal growth and loss rates in Lake Loosdrecht: first evaluation of the roles of light and wind on a basis of steady state kinetics. Hydrobiology 191: 129–138.

    Article  Google Scholar 

  • Gons, H. J., R. Veeningen & R. Van Keulen, 1986b. Effects of wind on a shallow lake ecosystem: redistribution of particles in the Loosdrecht Lakes. Hydrobiol. Bull. 20: 109–120.

    Article  CAS  Google Scholar 

  • Kirk, J. T. O., 1983. Light and photosynthesis in aquatic eco- systems. Cambridge University Press, Cambridge, 401 pp.

    Google Scholar 

  • Moed, J. R. & G. M. Hallegraeff, 1978. Some problems in the estimation of chlorophyll-a and phaeopigment from preand post acidification spectrophotometric measurements. Int. Revue ges. Hydrobiol. 63: 787–800.

    Article  CAS  Google Scholar 

  • Riegman, R. & L. R. Mur, 1986. Phosphate uptake kinetics of the natural phytoplankton population from the Loosdrecht lakes. Limnol. Oceanogr. 31: 983–988.

    CAS  Google Scholar 

  • Rijkeboer, M., W. A. De Kloet & H. J. Gons, 1986. A comparison of primary production measurements using two laboratory systems with differences in light quality. Hydrobiol. Bull. 20: 93–99.

    Article  Google Scholar 

  • Rijkeboer, M. & H. J. Gons, 1988. The relationship between oxygen exchange and changes in seston in laboratory scale enclosures. Verh. int. Ver. Limnol 23: 756–761.

    Google Scholar 

  • Sweerts, J-P. R. A., H. J. Gons & M. Rijkeboer, 1986. Phosphate uptake capacity of summer phytoplankton of the Loosdrecht Lakes in relation to phosphorus loading and irradiance. Hydrobiol. Bull. 20: 101–107.

    Article  CAS  Google Scholar 

  • Van Liere, L., 1979. On Oscillatoria agardhii Gomont. Thesis, University of Amsterdam. 97 pp.

    Google Scholar 

  • Van Liere, L., 1986a. Loosdrecht Lakes, origin, eutrophication, restoration and research programme. Hydrobiol. Bull. 20: 9–15.

    Google Scholar 

  • Van Liere, L., 1986b. Water quality research Loosdrecht Lakes; studying and modelling the impact of water management measures on the internal nutrient cycle. Limnological Institute, Nieuwersluis. WQL-report. 155 pp.

    Google Scholar 

  • Van Liere, L. & L. R. Mur, 1979. Growth kinetics of Oscillatoria agardhii Gomont in continuous culture, limited in its growth by the light-energy supply. J. gen. Microbiol. 115: 153–160.

    Google Scholar 

  • Verduin, J., 1982. Components contributing to light extinction in natural waters: method of isolation. Arch. Hydrobiol. 93: 303–312.

    Google Scholar 

  • Wofsy, S. C., 1983. A simple model to predict extinction coefficients and phytoplankton biomass in eutrophic waters. Limnol. Oceanogr. 28: 1144–1155.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

P. Biró J. F. Talling

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers, Dordrecht

About this paper

Cite this paper

Rijkeboer, M., Gons, H.J. (1990). Light-limited algal growth in Lake Loosdrecht: steady state studies in laboratory scale enclosures. In: Biró, P., Talling, J.F. (eds) Trophic Relationships in Inland Waters. Developments in Hydrobiology, vol 53. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0467-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0467-5_26

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6695-2

  • Online ISBN: 978-94-009-0467-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics