Nitrogen flow through a Brachionus /Chlorella mass culture system

  • Warren D. Nagata
Conference paper
Part of the Developments in Hydrobiology book series (DIHY, volume 52)


A model of nitrogen flow is presented through the Brachionusplicatilis/Chlorella saccharophila mass (batch) culture system, from the initial input of inorganic nitrogen to the algal culture medium to the final production of rotifers, dissolved nitrogen and particulate nitrogen.

A nitrogen budget was first formulated for B. plicatilis relating ingestion, excretion, egestion, somatic growth and reproductive growth. Measurements were made on rotifers from 20° and 10° cultures.

The calculated model of nitrogen flow through the rotifer/algal batch culture system estimates the percentages of the original input nitrogen which will be incorporated into algal nitrogen, rotifer nitrogen and the particulate and dissolved nitrogen pools. It is suggested that the dissolved nitrogen pool could be recycled directly for use in subsequent algal culture.

Key words

mariculture rotifers batch culture nitrogen recycling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Conover, R. J., 1978. Transformation of organic matter., In: O. Kinne (ed.), Marine Ecology Vol. IV Dynamics, Wiley, London: 221–499.Google Scholar
  2. Dagg, M. J., 1976. Complete carbon and nitrogen budgets for the carnivorous amphipod, Calliopius laeviusculus (Kroyer). Int. Revue ges. Hydrobiol. 61: 297–357.CrossRefGoogle Scholar
  3. Droop, M. R., 1976. The chemostat in mariculture., In: C. Persoone & E. Jaspers (eds.), Proc. 10th Europ. Symp. Mar. Biol. 1:71–93.Google Scholar
  4. Droop, M. R. & J. M. Scott, 1978. Steady-state energetics of a planktonic herbivore. J. mar. biol. Ass. U.K. 58:749–772.CrossRefGoogle Scholar
  5. Ejsmont-Karabin, J., 1983. Ammonia nitrogen and inorganic phosphorus excretion by the planktonic rotifers. Hydrobiologia 104: 231–236.CrossRefGoogle Scholar
  6. Fujita, S., 1983. The rotifer as living food for seedling production., In: Jpn. Soc. Sci. Fish, (ed.) The Rotifer Brachionus plicatilis, Biology and Mass Culture. Koseisha-Koseikaku, Tokyo, Vol. 44: 9–21, (In Japanese).Google Scholar
  7. Galkovskaya, G. A., 1963. On the utilization of food for growth and conditions for the maximum production of the rotifer Brachionus calyciflorus PALLAS. Zool. zh. Mosk. 42: 506–512, (In Russian), Fish. Res. Bd Can. Transi, no. 997.Google Scholar
  8. Galkovskaya, G. A., 1971. The production of planktonic Rotatoria. In: G. G. Winberg (ed.), Methods for the Estimation of Production of Aquatic Animals, Academic Press, London: 123–128.Google Scholar
  9. Galkovskaya, G. A. & J. Ejsmont-Karabin, 1981. The metabolic O: N ratio in rotifers. Dok. Akad. Nauk. belorussk. SSR 25: 472–474, (In Russian), Ca. Transi. Fish, aquat. Sci. no. 4811.Google Scholar
  10. Gibor, A., 1957. Conversion of phytoplankton to zooplankton. Nature, Lond. 179: 1304.CrossRefGoogle Scholar
  11. Hirata, H., 1980. Culture methods of the marine rotifer, Brachionus plicatilis. Min. Rev. Data File Fish. Res., 1: 27–46.Google Scholar
  12. Hirata, H. & W. D. Nagata, 1982. Excretion rates and excreted components of the rotifer Brachionus plicatilis O. F. MÜLLER in culture. Mem. Fac. Fish. Kagoshima Univ. 31: 161–174.Google Scholar
  13. Hirayama, K., 1983. Physiology of population growth. In: Jpn. Soc. Sci. Fish, (ed.), The Rotifer Brachionus plicatilis, Biology and Mass Culture. Koseikosha-Koseikaku, Tokyo, Vol. 44: 52–68 (in Japanese).Google Scholar
  14. Hirayama, K., 1987. A consideration of why mass culture of the rotifer Brachionus plicatilis with baker’s yeast is unstable. Hydrobiologia 147: 269–270.CrossRefGoogle Scholar
  15. Lubzens, E., 1987. Raising rotifers for use in aquaculture. Hydrobiologia 147: 245–255.CrossRefGoogle Scholar
  16. MacCarthy, J. J., 1970. A urease method for urea in seawater. Limnol. Oceanogr. 15: 309–313.CrossRefGoogle Scholar
  17. Mullin, M. M. & E. R. Brooks, 1970. Growth and metabolism of two planktonic, marine copepods as influenced by temperature and type of food. In: J. H. Steele (ed.) Marine Food Chains. Oliver & Boyd, Edinburgh: 74–95.Google Scholar
  18. Nagata, W. D., 1985a. Long-term acclimation of a parthenogenetic strain of Brachionus plicatilis to subnormal temperatures. I. Influence on size, growth and reproduction. Bull. Mar. Sci. 37: 716–725.Google Scholar
  19. Nagata, W. D., 1985b. Long-term acclimation of a parthenogenetic strain of Brachionus plicatilis Muller to subnormal temperatures II. Effect on clearance and ingestion rates. Bull. Fac. Fish. Hokkaido Univ. 36: 1–11.Google Scholar
  20. Schlosser, H. J. & K. Anger, 1982. The significance of some methodological effects of filtration and ingestion rates of the rotifer, Brachionus plicatilis. Helgolander Meeresunters. 35: 215–225.CrossRefGoogle Scholar
  21. Solorzano, L., 1969. The determination of ammonium in natural waters by the phenol-hypochlorite method. Limnol. Oceanogr. 14: 799–801.CrossRefGoogle Scholar
  22. Solorzano, L. & J. H. Sharp, 1980. Determination of total dissolved nitrogen in natural waters. Limnol. Oceanogr. 25: 751–754.CrossRefGoogle Scholar
  23. Starkweather, P. L. 1980. Aspects of the feeding behavior and trophic ecology of suspension-feeding rotifers. Hydrobiologia 73: 63–72.CrossRefGoogle Scholar
  24. Thoreson, S. S., Q. Dortch & S. I. Ahmed, 1982. Comparison of methods for extracting intracellular pools of inorganic nitrogen from marine phytoplankton. J. Plankton Res. 4: 695–704.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Warren D. Nagata
    • 1
  1. 1.Aquaculture DepartmentMalaspina CollegeNanaimoCanada

Personalised recommendations