Rotifers as food in aquaculture

  • E. Lubzens
  • A. Tandler
  • G. Minkoff
Part of the Developments in Hydrobiology book series (DIHY, volume 52)


The rotifer Brachionusplicatilis (O.F. Muller) can be mass cultivated in large quantities and is an important live feed in aquaculture. This rotifer is commonly offered to larvae during the first 7–30 days of exogenous feeding. Variation in prey density affects larval fish feeding rates, rations, activity, evacuation time, growth rates and growth efficiencies. B. plicatilis can be supplied at the food concentrations required for meeting larval metabolic demands and yielding high survival rates. Live food may enhance the digestive processes of larval predators. A large range of genetically distinct B. plicatilis strains with a wide range of body size permit larval rearing of many fish species. Larvae are first fed on a small strain of rotifers, and as larvae increase in size, a larger strain of rotifers is introduced. Rotifers are regarded as living food capsules for transferring nutrients to fish larvae. These nutrients include highly unsaturated fatty acids (mainly 20:5 n-3 and 22:6 n-3) essential for survival of marine fish larvae. In addition, rotifers treated with antibiotics may promote higher survival rates. The possibility of preserving live rotifers at low temperatures or through their resting eggs has been investigated.

Key words

Rotifers marine larvae nutrition Abstract 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arthur, D. K., 1976. Food and feeding of larvae of three fishes occurring in the California current, Sardinops sagax, Engraulis mordax and Trachurus symmetricus. Fish. Bull. USA. 74: 517–530.Google Scholar
  2. Barahona-Fernandes, M. H., 1979. Some effects of light intensity and photoperiod on the sea bass larvae, Dicentrarchus labrax (L.), reared at the Centre Oceanographique de Bretagne. Aquaculture 17:311–322.CrossRefGoogle Scholar
  3. Barahona-Fernandes, M. H. & G. Conan, 1981. Daily food intake of reared larvae of the European sea bass (Dicentrarchus labrax L.); statistical analysis and modelling. Rapp. P.-v. Reun. Cons. Int. Explor. Mer 178:41–44.Google Scholar
  4. Barnabe, G., 1974. Mass rearing of the bass Dicentrarchus labrax L. In J. H. S. Blaxter (ed), The Early Life History of Fish. Springer-Verlag, Berlin: 749–753.Google Scholar
  5. Ben-Amotz, A., R. Fishier & A. Schneller, 1987. Chemical composition of dietary species of marine unicellular algae and rotifers with emphasis on fatty acids. Mar. Biol. 95: 31–36.CrossRefGoogle Scholar
  6. Berghahn, R., S. Euteneuer & E. Lubzens, 1989. High density storage of rotifers (Brachionus plicatilis) in cooled and undercooled water. Spec. Pubi. Europ. Aquacult. Soc. (in press).Google Scholar
  7. Beyer, J. E., 1980. Feeding success of clupeoid fish larvae and stochastic thinking. Dana 1: 65–91.Google Scholar
  8. Beyer, J. E. & G. C. Laurence, 1981. Aspects of stochasticity in modelling growth and survival of clupeoid fish larvae. Rapp. P.-v. Reun. Cons. Int. Explor. Mer 178: 17–23.Google Scholar
  9. Blaxter, J. H. S., 1968. Rearing herring larvae to metamorphosis and beyond. J. mar. biol. Ass. UK. 48: 17–28.CrossRefGoogle Scholar
  10. Blaxter, J. H. S., 1975. The eyes of larval fish. In: M. A. Ali (ed), Vision in Fishes. Plenum Press, New York: 427–443.Google Scholar
  11. Blaxter, J. H. S. & M. Staines, 1970. Pure-cone retinae and retinomotor responses in larval teleosts. J. mar. biol. Ass. UK. 50: 449–460.CrossRefGoogle Scholar
  12. Boehlert, G. W. & M. M. Yoklavich, 1984. Carbon assimilation as a function of ingestion rate in larval Pacific herring, Clupea harengus pattasi Valenciennes. J. exp. mar. Biol. Ecol. 79: 251–262.CrossRefGoogle Scholar
  13. Brett, J.R. & T. D. D. Groves, 1979. Physiological energetics. In: W. S. Hoar, D. J. Randall & J. R. Brett (eds), Fish Physiology, Vol. 8. Academic Press, New York: 279–352.Google Scholar
  14. Buckley, L. J. & D. W. Dillmann, 1982. Nitrogen utilization of larval summer flounder, Parallichthys dentatus (Linnaeus). J. exp. mar. Biol. Ecol. 59: 243–256.CrossRefGoogle Scholar
  15. Castell, J. D., D. E. Conklin, J. S. Craigie, S. P. Lall & K. Norman-Boudreau, 1986. Aquaculture nutrition. In M. Bilio, H. Rosenthal & C. J. Sindermann (eds), Realism in Aquaculture; Achievements, Constraints, Perspectives. European Aquaculture Society, Bredene, Belgium: 251–308.Google Scholar
  16. Cowey, C. B., J. M. Owen, J. W. Adron & C. Middleton, 1976. Studies on the nutrition of marine flatfish. The effect of dietary fatty acids on the growth and fatty acid composition of turbot (Scophthalmus maximus). Br. J. Nutr. 36: 479–486.PubMedCrossRefGoogle Scholar
  17. Dabrowski, K., 1984. The feeding offish larvae: present ‘state of the art’ and perspectives. Reprod. Nutr. Develop. 24: 807–833.CrossRefGoogle Scholar
  18. Dannevig, H., 1897. On the rearing of larval and post larval stages of plaice and other flatfishes. Rep. Fish. Bd Scot. 1896: 175–193.Google Scholar
  19. Dendrinos, P. & J. P. Thorpe, 1987. Experiments on the artificial regulation of the amino acid and fatty acid contents of food organisms to meet the assessed nutritional requirements of larval, post-larval and juvenile Dover sole (Solea solea L.). Aquaculture 61: 121–154.CrossRefGoogle Scholar
  20. Doohan, M., 1973. An energy budget for adult Brachionus plicatilis Muller (Rotatoria). Oecologia (Beri.) 13:351–362.CrossRefGoogle Scholar
  21. Dowd, C. E. & E. D. Houde, 1980. Combined effects of prey concentration and photoperiod on survival and growth of larval sea bream, Archosargus rhomboidalis (Sparidae). Mar. Ecol. Prog. Ser. 3: 181–185.CrossRefGoogle Scholar
  22. Emmerson, W. D. 1984. Predation and energetics of Penaeus indicus (Decapoda: Penaeidae) larvae feeding on Brachionus plicatilis and Artemia nauplii. Aquaculture, 38: 201–209.CrossRefGoogle Scholar
  23. Epp, R. W. & P. W. Winston, 1978. The effects of salinity and pH on the oxygen consumption and activity of Brachionus plicatilis (Rotatoria). Comp. Biochem. Physiol. 59: 9–12.CrossRefGoogle Scholar
  24. Fuchs, J., 1978. Influence de la photoperiode sur la croissance et la survie de la larve et du juvenile de sole (Solea solea) en elevage. Aquaculture 15: 63–74.CrossRefGoogle Scholar
  25. Fuchs, J., 1982. Production de juveniles de sole (Solea solea) en conditions intensives. 1. Le premier mois d’elevage. Aquaculture 26: 321–337.CrossRefGoogle Scholar
  26. Fujii, M. & Y. Yone, 1976. Studies on nutrition of red sea bream. XII. Effect of dietary linolenic acid and ω 3 polyunsaturated fatty acids on growth and feed efficiency. Bull. Jap. Soc. Sci. Fish. 42: 583–588.Google Scholar
  27. Fujita, S., 1973. Importance of zooplankton mass culture in producing marine fish seed for fish farming. Bull. Plankton Soc. Jpn. 20: 49–53.Google Scholar
  28. Fujita, S., 1979. Culture of red sea bream, Pagrus major, and its food. Cultivation of fish fry and its live food. Spec. Pubi. Europ. Maricult. Soc. 4: 183–197.Google Scholar
  29. Fukuhara, O., 1983. Effect of prey density on the swimming behaviour of larval black porgy, Acanthopagrus schlegeli (Bleeker). Bull. Nansei Reg. Fish. Res. Lab. (15): 97–101.Google Scholar
  30. Fukusho, K., 1983. Present status and problems in culture of the rotifer Brachionus plicatilis for fry production of marine fishes in Japan. Symp. Int. Aquacult., Coquimbo, Chile, Sept. 1983: 361–374.Google Scholar
  31. Fukusho, K. & H. Iwamoto, 1980. Cyclomorphosis in size of the cultured rotifer Brachionus plicatilis. Bull. Natl. Res. Inst. Aquacult. 1: 29–37. (in Japanese, English summary).Google Scholar
  32. Fukusho, K., M. Okauchi, S. Nuraini, A. Tsujigado & T. Watanabe, 1984. Food value of rotifer Brachionus plicatilis, cultured with Tetraselmis tetrathele for larvae of red sea bream Pagrus major. Bull. Jpn. Soc. Sci. Fish. 50: 1439–1444.Google Scholar
  33. Fukusho, K., M. Okauchi, H. Tanaka & S. I. Wahyuni, 1985. Food value of rotifer Brachionus plicatilis, cultured with Tetraselmis tetrathele for larvae of a flounder Paralichthys olivaceus. Bull. Natl. Res. Inst. Aquacult. 7: 29–36.Google Scholar
  34. Gatesoupe, F. J., 1982. Nutrition and antibacterial treatments of live food organisms: the influence on survival, growth rate and weaning success of turbot (Scophthalmus maximus). Ann. Zootech. 31: 353–368.CrossRefGoogle Scholar
  35. Gatesoupe, F. J. & P. Luquet, 1981. Practical diet for mass culture of the rotifer Brachionus plicatilis: application to larval rearing of sea bass Dicentrarchus labrax. Aqua-culture 22: 149–163.CrossRefGoogle Scholar
  36. Gatesoupe, F. J. & J. H. Robin, 1982. The dietary value for sea bass larvae (Dicentrarchus labrax) of the rotifer Brachionus plicatilis fed with or without a laboratory-cultured alga. Aquaculture 27: 121–127.CrossRefGoogle Scholar
  37. Gatesoupe, F. J., C. Leger, R. Metailler, P. Luquet & M. Malaval, 1977. Alimentation lipidique du turbot (Scophthalmus maximus L.). I. Influence de la longueur de chaine de acides gras de la serie ω 3. Ann. Hydrobiol. 8: 89–97.Google Scholar
  38. Girin, M., 1974. Regime alimentaire et pourcentage de survie chez la larve de sole (Solea solea L.). Actes de Colloques, C.N.E.X.O. (1): 175–185.Google Scholar
  39. Girin, M., 1975. La ration alimentaire dans l’elevage larvaire du bar, Dicentrarchus labrax (L.). 10th Europ. Symp. Mar. Biol., Ostend, Belgium, Sept. 17–23, 1: 171–188.Google Scholar
  40. Govoni, J. J., D. S. Peters & J. V. Merriner, 1982. Carbon assimilation during larval development of the marine teleost Leiostomus xanthurus Lacepede. J. exp. mar. Biol. Ecol. 64: 287–299.CrossRefGoogle Scholar
  41. Govoni, J. J., G. W. Boehlert & Y. Watanabe, 1986. The physiology of digestion in fish larvae. Envir. Biol. Fishes 16: 59–77.CrossRefGoogle Scholar
  42. Hara, K., T. Ishihara, H. Arano & M. Yasuda, 1979a. Studies on protease of the rotifer, Brachionus plicatilis. I. Some properties of proteinase in the crude extracts. Bull. Fac. Fish. Nagasaki Univ. 46: 31–35.Google Scholar
  43. Hara, K., T. Ishihara, H. Arano & M. Yasuda, 1979b. Studies on protease of the rotifer, Brachionus plicatilis. II. Hydrolytic properties on some synthetic substrates. Bull. Fac. Fish. Nagasaki Univ. 46: 37–42.Google Scholar
  44. Hara, K., H. Arano & T. Ishihara. 1984. Some enzymatic properties of alkaline proteases of the rotifer Brachionus plicatilis. Bull. Jpn. Soc. Sci. Fish. 50: 1611–1616.Google Scholar
  45. Harada, T., 1970. The present status of marine fish cultivation research in Japan. Helgolander wiss. Meeresunters. 20: 594–601.CrossRefGoogle Scholar
  46. Helps, S., 1982. An examination of prey size selection and its subsequent effect on survival and growth of larval gilthead seabream (Spams aurata). M. Se. thesis, Plymouth Polytechnic, UK., 50 pp.Google Scholar
  47. Hino, A. & R. Hirano, 1980. Relationship between body size of the rotifer Brachionus plicatilis and the maximum size of particles ingested. Bull. Jpn. Soc. Sci. Fish. 46:1217–1222.Google Scholar
  48. Hirano, K., 1987. Studies on the culture of the rotifer (Brachionus plicatilis O. F. Muller). Bull. Fac. Agric. Miyazaki Univ. 34: 57–122.Google Scholar
  49. Hirata, H., 1980. Culture methods of the marine rotifer Brachionus plicatilis. Min. Rev. Data File Res. 1: 27–46.Google Scholar
  50. Hirata, H., M. Anastasios & S. Yamasaki, 1985. Evaluation of the use of Brachionus plicatilis and Artemia nauplii for rearing prawn Penaeus japonicus larvae on a laboratory scale. Mem. Fac. Fish. Kagoshima Univ. 34: 27–36.Google Scholar
  51. Houde, E. D. & B. J. Palko, 1970. Laboratory rearing of clupeid fish Harengulapensacolae from fertilized eggs. Mar. Biol. 5: 354–358.Google Scholar
  52. Houde, E. D. & R. C. Schekter, 1983. Oxygen uptake and comparative energetics among eggs and larvae of three subtropical marine fishes. Mar. Biol. 72: 283–293.CrossRefGoogle Scholar
  53. Howell, B. R., 1973. Marine fish culture in Britain. VIII. A marine rotifer, Brachionus plicatilis Muller, and the larvae of the mussel, Mytilus edulis L., as foods for larval flatfish. J. Cons. int. Explor. mer 35: 1–6.Google Scholar
  54. Howell, B. R., 1979. Experiments on the rearing of larval turbot, Scophthalmus maximus L. Aquaculture 18: 215–225.CrossRefGoogle Scholar
  55. Hunter, J. R., 1980. The feeding behaviour and ecology of marine fish larvae. In J. E. Bardach, J. J. Magnuson, R. C. May & J. M. Reinhart (eds), Fish Behaviour and Its Use in the Capture and Culture of Fishes. ICLARM Conf. Proc. 5, Manila, Philippines: 287–330.Google Scholar
  56. Hunter, J. R. & C. M. Kimbrell, 1980. Early life history of Pacific mackerel Scomber japonicus. Fish. Bull. 78: 89–102.Google Scholar
  57. Ito, T., 1960. On the culture of the mixohaline rotifer Brachionus plicatilis O. F. Muller, in sea water. Rep. Fac. Fish. Prefect. Univ. Mie 3: 708–740.Google Scholar
  58. Ivlev, V. S., 1961. Experimental ecology of the feeding of fishes. Yale University Press, New Haven, CT, 302 pp.Google Scholar
  59. Juario, J. V., M. N. Duray, V. M. Duray, J. F. Nacario & J. M. E. Almendras, 1984. Induced breeding and larval rearing experiments with milkfish Chanos chanos (Forskal) in the Philippines. Aquaculture 36: 61–70.CrossRefGoogle Scholar
  60. Kafuku, T. & H. Ikenoue, 1983. Modern methods of aquaculture in Japan. Developments in Aquaculture and Fisheries Science, 11. Kodansha Ltd., Tokyo, and Elsevier, Amsterdam, 216 pp.Google Scholar
  61. Kanazawa, A., 1985. Essential fatty acid and lipid requirement of fish. In C. B. Cowey, A. M. Mackie & J. G. Bell (eds), Nutrition and Feeding in Fish. Academic Press, London: 281–294.Google Scholar
  62. Kanazawa, A., S. I. Teshima, S. Inamori, S. Sumida & T. Iwashita, 1982. Rearing of larval red sea bream and ayu with artificial diets. Mem. Fac. Fish. Kagoshima Univ. 31: 185–192.Google Scholar
  63. Kentouri, M. & P. Divanach, 1982. Comportement et regime alimentaire des larves de marbre Lithognathus mormyrus (Poisson, Teleost., Sparidae) elevees dans des conditions de choix trophique polyspecifique et pluridimensionnel. C.R. Acad. Sci. Paris, Ser. III, 294: 859–861.Google Scholar
  64. Kissil, G. Wm., 1984/85. Overview: rearing larval stages of marine fish on artificial diets. Israel J. Zool. 33: 154–160.Google Scholar
  65. Kitajima, C., S. Fujita, F. Ohwa, Y. Yone & T. Watanabe, 1979. Improvement of dietary value for red sea bream larvae of rotifers Brachionus plicatilis cultured with baker’s yeast Saccharomyces cerevisiae. Bull. Jpn. Soc. Sci. Fish. 45: 469–471.Google Scholar
  66. Kitajima, C., T. Arakawa, F. Oowa, S. Fujita, O. Imada, T. Watanabe & Y. Yone, 1980. Dietary value for red sea bream larvae of rotifer Brachionus plicatilis cultured with a new type yeast. Bull. Jpn. Soc. Sci. Fish. 46: 43–46.Google Scholar
  67. Klumpp, D. W. & H. von-Westernhagen, 1986. Nitrogen balance in marine fish larvae; influence of developmental stage and prey density. Mar. Biol. 93: 189–199.CrossRefGoogle Scholar
  68. Korunuma, K. & K. Fukusho, 1987. Rearing of Marine Fish Larvae in Japan. IDRC, Ottawa, Canada: 109 pp.Google Scholar
  69. Kuhlmann, D., G. Quantz & U. Witt, 1981. Rearing of turbot larvae (Scophthalmus maximus L.) on cultured food organisms and postmetamorphosis growth on natural and artificial food. Aquaculture 23: 183–196.CrossRefGoogle Scholar
  70. Lasker, R., H. M. Feder, G. H. Theilacker & R. C. May, 1970. Feeding, growth, and survival of Engraulis mordax larvae reared in the laboratory. Mar. Biol. 5: 345–353.Google Scholar
  71. Laurence, G. G, 1977. A bioenergetic model for the analysis of feeding and survival potential of winter flounder Pseudopleuronectes americanus larvae during the period from hatching to metamorphosis. Fish. Bull. U.S. 75: 529–546.Google Scholar
  72. Liao, I. C, J. V. Juario, S. Kumagai, H. Nakajima, M. Natividad & P. Buri, 1979. On the induced spawning and larval rearing of the milkfish Chanos chanos (Forskal). Aquaculture 18: 75–93.CrossRefGoogle Scholar
  73. Lubzens, E., 1981. Rotifer resting eggs and their application to marine aquaculture. Spec. Pubi. Europ. Maricult. Soc. 6: 163–179.Google Scholar
  74. Lubzens, E., 1987. Raising rotifers for use in aquaculture. Hydrobiologia 147: 245–255.CrossRefGoogle Scholar
  75. Lubzens, E., 1989. Possible use of rotifer resting eggs and preserved live rotifers (Brachionus plicatilis) in aquaculture and mariculture. In N. De Paw, E. Jaspers & H. Ackeford (eds), Aquaculture — A Biotechnology in Progress. European Aquaculture Society (in press).Google Scholar
  76. Lubzens, E., A. Marko & A. Tietz, 1985. De novo synthesis of fatty acids in the rotifer Brachionus plicatilis. Aqua-culture 47: 27–37.CrossRefGoogle Scholar
  77. Lubzens, E., S. Rothbard, A. Blumenthal, G. Kolodny, B. Perry, B. Olund, Y. Wax & H. Farbstein, 1987. Possible use of Brachionus plicatilis (O. F. Muller) as food for freshwater cyprinid larvae. Aquaculture 60: 143–155.CrossRefGoogle Scholar
  78. Lubzens, E., B. Perry, S. Euteneuer & R. Berghahn, 1989. Preservation of rotifers for use in aquaculture. Spec. Pubi. Europ. Maricult. Soc. (in press)Google Scholar
  79. Minkoff, G., 1987. The effect of secondarily enriched rotifers on growth and survival of marine fish larvae. Ph. D. thesis, University of Stirling, UK.Google Scholar
  80. Mock, C. R., D. B. Revera & C. T. Fontaine, 1980. The larval culture of Penaeus stylirostris using modifications of the Galveston Laboratory technique. Proc. World Maricult. Soc. 11: 102–117.CrossRefGoogle Scholar
  81. Morales, J. C. 1983. Acuicultura, Marina Animal. Ediciones Mundi-Prensa, Madrid, 670 pp.Google Scholar
  82. Nash, C., C. M. Kuo & S. C. McConnel, 1974. Operational procedures for rearing larvae of the grey mullet (Mugil cephalus L.). Aquaculture 3: 15–24.CrossRefGoogle Scholar
  83. Oka, A., N. Suzuki & T. Watanabe, 1980. Effect of fatty acids in rotifers on growth and fatty acid composition of larval ayu Plecoglossus altivelis. Bull. Jpn. Soc. Sci. Fish. 46: 1413–1418.Google Scholar
  84. Okamoto, R., 1969. Rearing of red sea bream larvae. Bull. Jpn. Soc. Sci. Fish. 35: 563–566.Google Scholar
  85. Okauchi, M., T. Oshiro, S. Kitamura, A. Tsujigado & F. Fukusho, 1980. Number of rotifer Brachionus plicatilis consumed daily by a larva and juvenile of porgy, Acanthopagrus schlegeli. Bull. Natl. Res. Inst. Aquacult. 1: 39–45.Google Scholar
  86. Olsen, J. O. & F. Minck, 1983. A technical solution to the mass culturing of larval turbot. Aquacult. Eng. 2: 1–12.CrossRefGoogle Scholar
  87. Owen, J. M., J. W. Adron, C. Middleton & C. B. Cowey, 1975. Elongation and desaturation of dietary fatty acids in turbot Scophthalmus maximus L. and rainbow trout Salmo gairdneri Rich. Lipids 10: 528–531.PubMedCrossRefGoogle Scholar
  88. Peguin, C. L., 1984. The effect of photoperiod and prey density on the growth and survival of larval gilthead seabream, Spams aurata L. (Perciformes, Teleostei). M. Sc. thesis, Hebrew University, Jerusalem: 93 pp.Google Scholar
  89. Person-Le Ruyet, J. & P. Verillaud, 1980. Techniques d’elevage intensif de la Daurade doree Spams aurata (L.) de la naissance a l’age de deux mois. Aquaculture 20: 351–370.CrossRefGoogle Scholar
  90. Person-Le Ruyet, J. & P. Verillaud, 1981. Techniques d’elevage intensif de la Daurade doree (Spams aurata) de la naissance a l’age de 2 mois. Rapp. P.-v. Reun. Cons. Int. Explor. Mer 178: 527–529.Google Scholar
  91. Rezeq, T. A. & C. M. James, 1987. Production and nutritional quality of the rotifer Brachionus plicatilis fed Chlorella sp. at different cell densities. Hydrobiologia 147:257–261.CrossRefGoogle Scholar
  92. Samocha, T. M., N. Uziel & C. L. Browdy, 1988. Evaluation of animal protein sources for the culture of penaeid shrimp larvae. Aquaculture (in press).Google Scholar
  93. Scott, A. P. a S. M. Baynes, 1978. Effect of algal diet and temperature on the biochemical composition of the rotifer, Brachionus plicatilis. Aquaculture 14: 247–260.CrossRefGoogle Scholar
  94. Scott, A. P. & S. M. Baynes, 1979. The effect of unicellular algae on survival and growth of turbot larvae (Scophthalmus maximus L.). In J. E. Halver & K. Tiews (eds), Finfish Nutrition and Fishfeed Technology. Proc. World Symp., Hamburg, 20–23 June 1978, Vol. I: 423–433.Google Scholar
  95. Scott, A. P. & C. Middleton, 1979. Unicellular algae as food for turbot (Scophthalmus maximus) larvae — the importance of dietary long chain polyunsaturated fatty acids. Aquaculture 18: 227–240.CrossRefGoogle Scholar
  96. Snell, T. W., M. J. Childress, F. M. Boyer & F. H. Hoff, 1987. Assessing the status of rotifer mass cultures. J. World Aquacult. Soc. 18: 270–277.CrossRefGoogle Scholar
  97. Stepiens, W. P. Jr., 1976. Feeding of laboratory reared larvae of the sea bream Archosargus rhomboidalis (Sparidae). Mar. Biol. 38: 1–16.CrossRefGoogle Scholar
  98. Tandler, A. 1984/85. Overview: food for the larval stages of marine fish; live or inert. Israel J. Zool. 33: 161–166.Google Scholar
  99. Tandler, A. & S. Helps, 1985. The effects of photoperiod and water exchange rate on growth and survival of gilthead sea bream (Spams aurata, Linnaeus; Sparidae) from hatching to metamorphosis in mass rearing system. Aquaculture 48: 71–82.CrossRefGoogle Scholar
  100. Tandler, A. & C. Mason, 1984. The use of 14C labelled rotifers (Brachionus plicatilis) in the larvae of gilthead seabream (Spams aurata): Measurements of the effect of rotifer concentration, the lighting regime and seabream larval age on their rate of rotifer ingestion. Europ. Maricult. Soc. 8: 241–259.Google Scholar
  101. Tandler, A. & R. Sherman, 1981. Food organism concentration, environmental temperature and survival of the gilthead bream (Spams aurata) larvae. Spec. Publ. Europ. Maricult. Soc. 6: 237–248.Google Scholar
  102. Theilacker, G. & K. Dorsey, 1980. Larval fish diversity; a summary of laboratory and field research. IOC Workshop Rep. 28: 105–142.Google Scholar
  103. Theilacker, G. H. & A. S. Kimball, 1984. Comparative quality of rotifers and copepods as foods for larval fishes. CalCOFI Rep. 25: 80–86.Google Scholar
  104. Theilacker, G. H. & M. F. McMaster, 1971. Mass culture of the rotifer Brachionus plicatilis and its evaluation as food for larval anchovies. Mar. Biol. 10: 183–188.CrossRefGoogle Scholar
  105. Walford, J. & T. Lam, 1987. Effect of feeding with microcapsules on the content of essential fatty acids in live foods for the larvae of marine fishes. Aquaculture 61: 219–229.CrossRefGoogle Scholar
  106. Watanabe, T., 1980. Studies on the improvement of feeding techniques for rearing the larvae of Panaeus semisulcatus. Kuwait Inst. Scient. Res., Spec. Publ. KISR/PP 1012/FRM-RT-R-8001. 24 pp.Google Scholar
  107. Watanabe, T., C. Kitajima & S. Fujita, 1983. Nutritional values of live organisms used in Japan for mass propagation of fish: a review. Aquaculture 34: 115–143.CrossRefGoogle Scholar
  108. Witt, U., G. Quantz & D. Kuhlmann, 1984. Survival and growth of turbot larvae Scophthalmus maximus L. reared on different food organisms with special regard to longchain polyunsaturated fatty acids. Aquacult. Eng. 177–190.Google Scholar
  109. Yamasaki, S. & H. Hirata, 1982. Rearing of the prawn, Penaeus japonicus, fed on frozen and living rotifers. Min. Rev. Data File Fish. Res. 2: 87–89.Google Scholar
  110. Yamasaki, S., S. H. Cheuh, K. J. Ang, H. Hirata, A. Z. Abidin & A. Z. Alias, 1988. Manual of hatchery management based on bio-physico-chemical control. Min. Rev. Data File Fish. Res. 5: 1–102.Google Scholar
  111. Yone, Y. & M. Fujii, 1975. Studies on nutrition of red sea bream. XI. Effects of ω 3 fatty acid supplement in acorn oil diet on growth rate and feed efficiency. Bull. Jpn. Soc. Sci. Fish. 41:73–77.Google Scholar
  112. Yufera, M. & E. Pascual, 1984. La produccion de organismos zooplanctonicos para la alimentacion larvaria en acuicultura marina. Inf. Teen. Inst. Inv. Pesq. 119: 27 pp.Google Scholar
  113. Yufera, M., A. Rodriguez & L. M. Lubian, 1984. Zooplankton ingestion and feeding behaviour of Penaeus kerathurus larvae reared in the laboratory. Aquaculture 42: 217–224.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • E. Lubzens
    • 1
  • A. Tandler
    • 2
  • G. Minkoff
    • 3
  1. 1.Israel Oceanographic & Limnological ResearchNational Institute of OceanographyHaifaIsrael
  2. 2.Israel Oceanographic & Limnological ResearchNational Center for MaricultureEilatIsrael
  3. 3.Tinamenor S.A.CantabriaSpain

Personalised recommendations