Temperature aspects of ecological bioenergetics in Brachionus angularis (Rotatoria)

  • Norbert Walz
  • Tanja Gschloessl
  • Ulli Hartmann
Conference paper
Part of the Developments in Hydrobiology book series (DIHY, volume 52)


The influence of temperature and food quality was studied on the following energy balance parameters of B. angularis: ingestion, production, growth and mortality. The ingestion rate rises to an optimum at 15 and 20 °C and decreases at 25 °C. The other rates increase continuously over the 5–25 °C range. The Q10-values of production rate are higher than those of ingestion rate. Temperature also modifies the relationship between food concentration and bioenergetic rates. They react according to a Monod function (production at all temperatures, growth at 10 °C) or decrease at high concentrations (growth at 15° and 20 °C).

Key words

rotifers temperature food concentration bioenergetic parameters 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bliss, C. I. & A. T. James, 1966. Fitting the rectangular hyperbola. Biometrics 22: 573–602.PubMedCrossRefGoogle Scholar
  2. Edmondson, W. T., 1965. Reproductive rates of planktonic rotifers as related to food and temperature in nature. Ecol. Monogr. 35:61–112.CrossRefGoogle Scholar
  3. Galkovskaya, G. A., 1987. Planktonic rotifers and temperature. Hydrobiologia 147: 307–317.CrossRefGoogle Scholar
  4. Gschloessl, T., 1985. Die Nahrungsaufnahme von Brachionus annularis (Rotatoria) in Abhangigkeit von der Futterart, der Futterkonzentration, der Temperatur und der Fütterungsdauer. Diplomarbeit Faculty of Biology, Univ. Munich, 127 pp.Google Scholar
  5. Halbach, U., 1970. Einfluß der Temperatur auf die Populationsdynamik des planktischen Rädertierchens Brachionus calyciflorus Pallas. Oecologia 4: 176–207.CrossRefGoogle Scholar
  6. Halbach, U. & G. Halbach-Keup, 1974. Quantitative Beziehungen zwischen Phytoplankton und der Populations-dynamik des Rotators Brachionus calyciflorus Pallas. Befunde aus Laboratoriumsexperimenten und Freilanduntersuchungen. Arch. Hydrobiol. 73: 273–309.Google Scholar
  7. Hartmann, U., 1987. Die Populationsdynamik der pelagischen Rotatorien Brachionus annularis und Notholca caudata in Abhängigkeit von der Futterkonzentration und der Temperatur. Diplomarbeit Faculty of Biology, Univ. Munich, 91 pp.Google Scholar
  8. Hirayama, K. & T. Kusano, 1972. Fundamental studies on physiology of rotifer for its mass culture. II. Influence of water temperature on population growth of rotifers. Bull. Jap. Soc. Sci. Fish. 38: 1357–1363.Google Scholar
  9. Hirayama, K., K. Watanabe & T. Kusano, 1973. Fundamental studies on physiology of rotifer for its mass culture. III. Influence of phytoplankton density on population growth. Bull. Jap. Soc. Sci. Fish. 39: 1123–1127.Google Scholar
  10. King, C. E., 1967. Food, age, and the dynamics of a laboratory population of rotifers. Ecology 48: 111–128.CrossRefGoogle Scholar
  11. Lampert, W., 1984. The measurement of respiration. In: Downing, J. A. & F. H. Rigler (eds), A manual on methods for the assessment of secondary production in fresh waters. 2nd ed. Blackwell Scientif. Pubi., Oxford. IBP-Handbook 17: 413–468.Google Scholar
  12. Laxhuber, R. & U. Hartmann, 1988. The influence of temperature on the life-cycle of the cold-stenothermal rotifer Notholca caudata. Verh. int. Ver. Limnol. 23: 2016–2018.Google Scholar
  13. May, L., 1987. Culturing freshwater planktonic rotifers on Rhodomonas minuta var. nannoplanktica Skuja and Stichococcus bacillaris Nägeli. J. Plankton Res. 9: 1217–1223.CrossRefGoogle Scholar
  14. Paloheimo, J. E., 1974. Calculation of instantenous birth rates. Limnol. Oceanogr. 19: 692–694.CrossRefGoogle Scholar
  15. Pilarska, J., 1977. Ecophysiological studies on Brachionus rubens Ehrbg. (Rotatoria). II. Production and respiration.-Pol. Arch. Hydrobiol. 24: 329–341.Google Scholar
  16. Pourriot, R. & C. Rougier, 1975. Dynamique d’une population experimentale de Brachionus dimidatus (Bryce) (Rotifere) en fonction de la nourriture et de la temperature. Ann. Limnol. 11: 125–143.CrossRefGoogle Scholar
  17. Romanovsky, Yu. E. & L. Polishchuck, 1982. A theoretical approach to calculation of secondary production at the population level. Int. Revue, ges. Hydrobiol. 67: 341–359.Google Scholar
  18. Rothhaupt, K. O., 1985. A model approach to the population dynamics of the rotifer Brachionus rubens in two-stage chemostat culture. Oecologia 65: 252–259.CrossRefGoogle Scholar
  19. Vuckovic, M., 1981. Einfluß der Temperatur und der Nahrungsquantität auf die Populationsdynamik des planktischen Rädertiers Brachionus rubens Ehrenberg. Diplomarbeit Dep. Biology, Univ. Frankfurt/M., 75 pp.Google Scholar
  20. Walz, N., 1983. Individual culture and experimental population dynamics of Keratella cochlearis (Rotatoria). Hydrobiologia 107: 35–43.CrossRefGoogle Scholar
  21. Walz, N., 1987a. Comparative population dynamics of Brachionus angularis and Keratella cochlearis. Hydrobiologia 147: 209–213.CrossRefGoogle Scholar
  22. Walz, N., 1987b. Stoffumsatz und Kinetik von Regulationsprozessen bei Zooplankton-Populationen. Analysen und Modelle in Rotatorien-Chemostaten und im Plankon eines Sees. Habilitationsschrift Faculty of Biology, Univ. Munich, 225 pp.Google Scholar
  23. Walz, N. & T. Gschloessl, 1988. Functional response of ingestion and filtration rate of the rotifer Brachionus angularis to the food concentration. Verh. int. Ver. Limnol. 23: 1993–2000.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Norbert Walz
    • 1
  • Tanja Gschloessl
    • 1
  • Ulli Hartmann
    • 1
  1. 1.Zoologisches InstitutMünchen 2Germany

Personalised recommendations