Protein patterns in rotifers: the timing of aging

  • Maria José Carmona
  • Manuel Serra
  • Maria Rosa Miracle
Conference paper
Part of the Developments in Hydrobiology book series (DIHY, volume 52)


Single rotifer individuals have been characterized biochemically to obtain a fingerprint of their physiological state using a modified ultrasensitive silver-stain procedure to detect total proteins in polyacrylamide gels. Patterns are completely uniform for young isogenic individuals raised in the same culture, but they start to change when these individuals reach a certain age. This age is close to the mean lifespan and to both the cessation of body growth and reproduction. Variability is greatest among individuals of the same chronological age, thus the rate of aging is different even among individuals having identical genotypes and experiencing the same environment.

Key words

aging rotifers protein electroforetic patterns individual growth 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aronovich, T. M. & L. V. Spektorova, 1974. Survival and fecundity of Brachionus calyciflorus in water of different salinities. Hydrobiol. J. 10: 71–74.Google Scholar
  2. Bertalanffy, L., 1948. Das organische Wachstum und seine Gesetzmssigkeiten. Experientia 4: 255–269.PubMedCrossRefGoogle Scholar
  3. Conejero, V. & J. S. Semancik, 1977. Analysis of the proteins in crude extracts by polyacrylamide slab gel electrophoresis. Phytopathology 66: 1424–1426.CrossRefGoogle Scholar
  4. Fanestil, D. D. & C. H. Barrows, 1965. Aging in the rotifer. J. Gerontol. 20: 462–469.PubMedGoogle Scholar
  5. Finch, C. E., 1987.The ordely decay of order in the regulation of aging processes. In F. E. Yates (ed.), Self-organizing systems. The emergence of order. Plenum Press, New York: 213–236.Google Scholar
  6. Jennings, H. S. & R. S. Lynch, 1928. Age, mortality, fertility and individual diversities in the rotifer Proales sordida Gosse. I. Effect of the age of the parent on characteristics of the offspring. J. exp. Zool. 50: 345–407.CrossRefGoogle Scholar
  7. King, C. E., 1967. Food, age, and the dynamics of a laboratory population of rotifers. Ecology 48: 111–128.CrossRefGoogle Scholar
  8. King, C. E., 1969. Experimental studies of ageing in rotifers. Exp. Gerontol. 4: 63–79.PubMedCrossRefGoogle Scholar
  9. King, C. E., 1983. A re-examination of the Lansing Effect. Hydrobiologia 104: 141–146.CrossRefGoogle Scholar
  10. King, C. E. & M. R. Miracle, 1980. A perspective on aging in rotifers. Hydrobiologia 73: 13–19.CrossRefGoogle Scholar
  11. Lansing, A. I., 1947. A transmissible, cumulative and reversible factor in aging. J. Gerontol. 2: 228–239.PubMedGoogle Scholar
  12. Lansing, A. I., 1948. Evidence for aging as a consequence of growth cessation. Proc. nat. Acad. Sci. U.S.A. 34: 304–310.CrossRefGoogle Scholar
  13. Lebedeva, L. I. & T. N. Gerasimova, 1985. Peculiarities of Philodina roseola (Ehrbg.) (Rotatoria Bdelloida). Growth and reproduction under various temperature conditions. Int. Revue, ges. Hydrobiol. 70: 509–525.CrossRefGoogle Scholar
  14. Lints, F. A., 1978. Genetics and aging, Interdisciplinary Topics in Gerontology-Karger, S., Basel 129 pp.Google Scholar
  15. Luciani, A., J. Chasse & P. Clement, 1983. Aging in Brachionus plicatilis: The evolution of swimming as a function of age a two different calcium concentrations. Hydrobiologia 104: 141–146.CrossRefGoogle Scholar
  16. McKerrow, J. H., 1979. Non-enzymatic, post-translational anmino acid modifications in ageing. A brief review. Mech. Ageing Dev. 10: 371–377.PubMedCrossRefGoogle Scholar
  17. Meadow, N. D. & C. H. Barrows, 1971. Studies on aging in a bdelloid rotifer I. The effect of various culture systems on longevity and fecundity. J. exp. Zool. 176: 303–313.PubMedCrossRefGoogle Scholar
  18. Oakley, B. R., D. R. Kirsch & N. R. Morris, 1980. A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels. Anal. Biochem. 105: 361–363.PubMedCrossRefGoogle Scholar
  19. Ricci, C., 1983. Life histories of some species of Rotifera Bdelloidea. Hydrobiologia 104: 175–180.CrossRefGoogle Scholar
  20. Semancik, J. S., 1976. Structure and replication of plants viroids. In: Animal Virology, ICN-UCLA, Symposia on Molecular and cellular Biology. Baltimore, D., A. S. Huang & C. F. Fox (eds.), pp. 529–545 Acad. Press, New York: 523–545.Google Scholar
  21. Serra, M., 1987. Variación morfométrica, isoenzimática y demográfica en poblaciones de Brachionus plicatilis: diferenciación genética y plasticidad fenotípica. Ph. D. Thesis, Universidad de Valencia.Google Scholar
  22. Serra, M. & M. R. Miracle, 1983. Biometrie analysis of Brachionus plicatilis ecotypes from Spanish lagoons. Hydrobiologia 104: 279–291.CrossRefGoogle Scholar
  23. Serra, M. & M. R. Miracle, 1985. Enzyme polymorphism in Brachionus plicatilis populations from several Spanish lagoons. Verh. int. Ver. Limnol. 22: 2991–2996.Google Scholar
  24. Serra, M. & M. R. Miracle, 1987. Biometrie variation in three strains of Brachionus plicatilis. Hydrobiologia 147: 83–89.CrossRefGoogle Scholar
  25. Snell, T. W. & C. E. King, 1977. Lifespan and fecundity patterns in rotifers: The cost of reproduction. Evolution 31: 882–890.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Maria José Carmona
    • 1
  • Manuel Serra
    • 1
  • Maria Rosa Miracle
    • 1
  1. 1.Departamento de Ecología, Facultad de BiologíaUniversidad de ValenciaBurjasot, ValenciaSpain

Personalised recommendations