Systematics, reproductive isolation and species boundaries in monogonont rotifers

  • Terry W. Snell
Part of the Developments in Hydrobiology book series (DIHY, volume 52)


The typological concept of rotifer species and the morphological basis of rotifer systematics is reviewed and alternatives proposed. Occasional sexuality in the cyclical parthenogenetic life cycle of monogononts permits application of the biological species concept to this group. Data from cross-mating experiments with Asplanchna, Brachionus and Epiphanes illustrate the usefulness of reproductive isolation as a criterion for species boundaries. Populations from different geographic regions are often interfertile indicating that rotifer species are genetically integrated over wide areas. The main types of isolating mechanisms operating in monogononts are reviewed. The role of behavioral reproductive isolation in maintaining species boundaries is examined. The use of a mate recognition bioassay which estimates the probability of copulation and quantifies the degree of isolation is described. Recent work of the mechanism of mate recognition is reviewed. It is concluded that the biological species concept is applicable to rotifers and that a more experimental approach to determining species boundaries is both feasible and desirable.

Key words

mating reproductive isolation Rotifera sexuality systematics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Birky, C.W., Jr. & J.J. Gilbert, 1971. Parthenogenesis in rotifers: The control of sexual and asexual reproduction. Amer. Zool. 11:245–266.Google Scholar
  2. Birky, C. W., Jr., 1967. Studies on the physiology and genetics of the rotifer Asplanchna. III. Results of outcrossing, selfing and selection. J. exp. Zool. 165: 104–116.Google Scholar
  3. Bogdan, K. G. & J. J. Gilbert, 1987. Quantitative comparison of food niches in some freshwater zooplankton. Oecologia 72: 331–340.CrossRefGoogle Scholar
  4. Carlin, B., 1943. Die Planktonrotatorien des Motalastrom. Medd. Lunds Univ. Limnol. Institut., 258 pp.Google Scholar
  5. Clement, P., E. Wurdak & J. Amsellem, 1983. Behavior and ultrastructure of sensory organs in rotifers. Hydrobiologia 104: 89–130.CrossRefGoogle Scholar
  6. Dobzhansky, T., 1970. Genetics of the Evolutionary Process. Columbia University Press, New York, 505 pp.Google Scholar
  7. Giddings, L. V. & A. R. Templeton, 1983. Behavioral phylogenies and the direction of evolution. Science 220: 372–378.PubMedCrossRefGoogle Scholar
  8. Gilbert, J. J., 1963. Contact chemoreceptors, mating behavior and reproductive isolation in the rotifer genus Brachionus. J. Exp. Biol. 40: 625–641.Google Scholar
  9. Gilbert, J.J, C. W. Birky, Jr. & E. S. Wurdak, 1979. Taxonomic relationships of Asplanchna brightwelli.A. intermedia and A. sieboldi. Arch. Hydrobiol. 87: 224–242.Google Scholar
  10. Hauser, C. L., 1987. The debate about the biological species concept — a review. Z. zool. Syst. Evolut.-forsch. 25: 241–257.Google Scholar
  11. Hebert, P. D. N., 1987. Genotypic characteristics of the cladocera. Hydrobiologia 145: 183–193.CrossRefGoogle Scholar
  12. Hertel, E. W., 1942. Studies on vigor in the rotifer Hydatina senta. Physiol. Zool. 15: 304–324.Google Scholar
  13. Holman, E. W., 1987. Recognizability of sexual and asexual species of rotifers. Systematic Zoology 36: 381–386.CrossRefGoogle Scholar
  14. Hutchinson, G. E., 1967. A Treatise on Limnology. Volume 2. Introduction to Lake Biology and Limnoplankton. John Wiley & Sons, New York, 1115 pp.Google Scholar
  15. Hutchinson, G. E., 1981. When are species necessary? In: Population Biology and Evolution, R. C. Lewontin (ed.), Syracuse University Press, Syracuse, NY: 177–186.Google Scholar
  16. King, C. E. & T. W. Snell, 1980. Density-dependent sexual reproduction in natural populations of the rotifer Asplanchna girodi. Hydrobiologia 73: 149–152.CrossRefGoogle Scholar
  17. King, C. E., 1977. Genetics of reproduction, variation, and adaptation in rotifers. Arch. Hydrobiol. Beih. 8: 187–201.Google Scholar
  18. Lambert, D. M. & H. E. H. Paterson, 1983. On bridging the gap between race and species: The isolation concept and an alternative. Proc. linn. Soc. N.S.W. 107: 501–514.Google Scholar
  19. Littlejohn, M., 1981. Reproductive isolation: a critical review. In: Evolution and Speciation, W. R. Atchley & D. S. Woodruff (eds.), Cambridge University Press, Cambridge: 298–334.Google Scholar
  20. Mayr, E., 1963. Animal Species and Evolution. Belknap Press, Harvard University, Cambridge, MA.Google Scholar
  21. Mayr, E., 1970. Populations, Species and Evolution. Belknap Press, Harvard University, Cambridge, MA.Google Scholar
  22. Mayr, E. 1981. Biological classification: Toward a synthesis of opposing methodologies. Science 214: 510–516.PubMedCrossRefGoogle Scholar
  23. Miracle, M., M. Serra, E. Vicente & C. Blanco, 1987. Distribution of Brachionus species in Spanish mediterranean wetlands. Hydrobiologia 147: 75–81.CrossRefGoogle Scholar
  24. Nei, M., T. Maruyama & C. Wu, 1983. Models of evolution of reproductive isolation. Genetics 103: 557–579.PubMedGoogle Scholar
  25. Nevo, E. & R. R. Capranica, 1985. Evolutionary origin of ethological isolation in cricket frogs, Acris. Evol. Biol. 19: 147–214.Google Scholar
  26. Paterson, H. E. H., 1978. More evidence against speciation by reinforcement. S. African J. Science 74: 369–371.Google Scholar
  27. Paterson, H. E. H., 1980. A comment on ‘mate recognition systems’. Evolution 34: 330–331.CrossRefGoogle Scholar
  28. Paterson, H. E. H., 1982. Perspectives on speciation by reinforcement. S. African J. Science 78: 53–57.Google Scholar
  29. Paterson, H. E. H., 1985. The recognition concept of species. In: Species and Speciation, E. S. Vrba (ed.), Transvaal Museum Monograph No. 4, Transvaal Museum, Pretoria, Rep. S. Africa: 21–29.Google Scholar
  30. Pejler, B., 1956. Introgression in planktonic Rotatoria with some points of view on its causes and conceiveable results. Evolution 10: 246–261.CrossRefGoogle Scholar
  31. Pejler, B., 1977a. General problems on rotifer taxonomy and global distribution. Arch. Hydrobiol. Beih. 8: 212–220.Google Scholar
  32. Pejler, B., 1977b. On the global distribution of the family Brachionidae (Rotatoria). Arch. Hydrobiol. Beih. Supplement 2: 255–306.Google Scholar
  33. Ruttner-Kolisko, A., 1963. The interrelationships of the Rotatoria. In: The Lower Metazoa, E. C. Dougherty, (ed.), Univ. Calif. Press, Berkeley, Calif: 263–272.Google Scholar
  34. Ruttner-Kolisko, A., 1969. Kreuzungexperimente zwischen Brachionus urceolaris and Brachionus quadridentatus, ein Beitrag zur Fortpflanzungbiologie der heterogonen Rotatoria. Arch. Hydrobiologie 65: 397–412.Google Scholar
  35. Ruttner-Kolisko, A., 1974. Plankton Rotifers. Binnen-gewasser 26 suppl.: 1–146.Google Scholar
  36. Ruttner-Kolisko, A., 1983. The significance of mating processes for the genetics and for the formation of resting eggs in monogonont rotifers. Hydrobiologia 104: 181–190.CrossRefGoogle Scholar
  37. Ruttner-Kolisko, A., 1985. Results of individual cross-mating experiments in three distinct strains of Brachionus plicatilis (Rotatoria). Verh. int. Ver. Limnol. 22: 2979–2982.Google Scholar
  38. Ryan, M. J. & W. Wilczynski, 1988. Coevolution of sender and receiver: Effect on local mate preference in cricket frogs. Science 240: 1786–1788.PubMedCrossRefGoogle Scholar
  39. Shull, A. F., 1911. Studies in the life cycle of Hydatina senta. II. The role of temperature, of chemical composition of the medium, and of internal factors on the ratio of partheno-genetic to sexual forms. J. exp. Zool. 10: 117–166.CrossRefGoogle Scholar
  40. Shull, A. F., 1915. Inheritance in Hydatina senta. IV. Characters of females and their parthenogenetic eggs. J. exp. Zool. 18: 145–186.CrossRefGoogle Scholar
  41. Snell, T. W. & C. A. Hawkinson, 1983. Behavioral reproductive isolation among populations of the rotifer Brachionus plicatilis. Evolution 37: 1294–1305.CrossRefGoogle Scholar
  42. Snell, T. W. & F. H. Hoff, 1987. Fertilization and male fertility in the rotifer Brachionus plicatilis. Hydrobiologia 147: 329–334.CrossRefGoogle Scholar
  43. Snell, T. W., M. J. Childress & B. C. Winkler, 1988. Characteristics of the mate recognition factor in the rotifer Brachionus plicatilis. Comp. Biochem. Phys. 89A: 481–485.Google Scholar
  44. Snell, T. W. & M. A. Nacionales, 1989a. Sex pheromone communication in Brachious plicatilis (Rotifera). Submitted.Google Scholar
  45. Snell, T. W. & M. A. Nacionales, 1989b. Localization of the mate recognition glycoprotein on the rotifer Brachionus plicatilis. Submitted.Google Scholar
  46. Templeton, A. R., 1987. Species and speciation. Evolution 41:233–235.CrossRefGoogle Scholar
  47. Thornhill, R. & J. Alcock, 1983. The Evolution of Insect Mating Systems. Harvard University Press, Cambridge, MA.Google Scholar
  48. Van Valen, L., 1982. Integration of species: Stasis and biogeography. Evol. Theory 6: 99–112.Google Scholar
  49. Wallace, R. L. & R. A. Colburn, 1989. Phylogenetic relationships within the phylum Rotifera: orders and genus Notholca. Hydrobiologia 186/187: 311–318.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Terry W. Snell
    • 1
  1. 1.Division of ScienceUniversity of TampaTampaUSA

Personalised recommendations