The skeletal muscles of rotifers and their innervation

  • Pierre Clément
  • Jacqueline Amsellem
Conference paper
Part of the Developments in Hydrobiology book series (DIHY, volume 52)


The skeletal muscles of rotifers are monocellular or occasionally bicellular. They display great diversity of cytological features correlated to their functional differentiation. The cross-striated fibers of some retractors are fast contracting and relaxing, with A-band lengths of 0.7 μm to 1.6 μm, abundant sarcoplasmic reticulum and dyads. Other retractors and the circular muscles are tonic fibers (A band > 3 μm), stronger (large volume of myoplasm) or with greater endurance (superior volume of mitochondria/myoplasm). All of these retractor muscles are coupled by gap junctions and are innervated at two symmetrical points; they constitute two motor units implicated in withdrawal behaviour.

The muscles inserted on the ciliary roots of the cingulum control swimming. They are multi-innervated and each of them constitute one motor unit. They have characteristics of very fast fibers; the shortest A-band length is 0.5μm in Asplanchna.

All the skeletal muscles of bdelloids are smooth or obliquely striated as are some skeletal muscles of monogononts. These muscles are well suited for maximum shortening and are either phasic or tonic fibers.

All rotifer skeletal muscles originate from ectoderm and contain thin and thick myofilaments whose diameters are identical to those of actin and myosin filaments in vertebrate fast muscles or in insect flight muscles. There are no paramyosinic features in the thick myofilaments. The insertion, innervation, coupling by gap-junctions and other cytological differentiations of rotifer skeletal muscles are reviewed and their phytogeny discussed.

Key words

muscles innervation behavior cytology ultrastructure rotifers smooth muscles striated muscles motor units phytogeny 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amsellem, J. & P. Clément, 1977. Correlations between ultra-structural features and contraction rates in rotiferan muscle. Cell Tissue Res., 181: 81–90.PubMedCrossRefGoogle Scholar
  2. Amsellem, J. & P. Clément, 1988. The muscle of a mono-gonont rotifer Trichocerca rattus. II. The central retractor muscles. Tissue and cell, 20(1): 89–108.PubMedCrossRefGoogle Scholar
  3. Amsellem, J. & G. Nicaise, 1980. Ultrastructural study of muscles cells and their connections in the digestive tract of Sepia officinalis. J. submicrosc. cytol., 12(2): 219–231.Google Scholar
  4. Beauchamp, P. de, 1965. Classe des Rotifères. In: Traité de Zoologie, Anatomie, Systématique, Biologie. P. P. Grassé, IV, 3: 1225–1379.Google Scholar
  5. Brakenhoff, H., 1937. Zur morphologie der Bdelloidea. Zool. Jahrb. Abt. Anat., 63.Google Scholar
  6. Chapman, R. A., C. F. A. Pantin & E. A. Robson, 1962. Muscle in Coelenterates. Rev. Canad. Biol, 21: 267–278.PubMedGoogle Scholar
  7. Chien, P. & H. Koopowitz, 1972. The ultrastructure of neuromuscular systems in Notoplana articola, a free-living polyclad flatworm. Z. Zellforsh., 133: 277–288.CrossRefGoogle Scholar
  8. Clément, P., 1969. Premières observations sur l’ultrastruc-ture comparée des téguments de rotifères. Vie et Milieu A, 20: 461–482.Google Scholar
  9. Clément, P. & X. Fouillet, 1970. Les jonctions cellulaires d’un organisme (rotifère). 7ème Cong. Intern. Micr. Electr., Grenoble, 1:7–8.Google Scholar
  10. Clément, P., 1977. Ultrastructural research on rotifers. Arch. Hydrobiol. Beih. Ergebn. Limnol, 8: 270.Google Scholar
  11. Clément, P., 1980. Phylogenetic relationships of rotifers and derived from photoreceptor morphology and other ultra-structural analysis. Hydrobiologia, 73: 93–117.CrossRefGoogle Scholar
  12. Clément, P., 1985. The relationships of rotifers, as deduced from their ultrastructure and behavior. In: The origin and relationships of lower Metazoa. (eds Conway Morris et al.) 224–247. Clarendon Press, Oxford.Google Scholar
  13. Clément, P., 1987. Movements in rotifers: correlations of ultrastructure and behavior. Hydrobiologia, 147:339–359.CrossRefGoogle Scholar
  14. Clément, P. & J. Amsellem, 1986. Ultrastructures et comportements: neuro-éthologie des rotifères. In: Neuro-éthologie (ed. R. Campan). Comportements. 39–57. CNRS. Paris.Google Scholar
  15. Clément, P., E. Wurdak & J. Amsellem, 1983. Behavior and ultrastructure of sensory organs in rotifers. Hydrobiologia, 104: 89–130.CrossRefGoogle Scholar
  16. Duvert, M., 1971. Ultrastructure de la jonction myo-épidermique dans les muscles du tronc de Sagitta cetosa (Chaetognates). C.R. Acad. Sci., Paris, Ser. D, 272: 2575–2577.Google Scholar
  17. Hardie, J. & C. Hawes, 1982. The three dimensional structure of the Z-disc in Insect supercontracting muscle. Tissue and Cell, 14(2): 219–231.CrossRefGoogle Scholar
  18. Hernandez-Nicaise, M. L. & J. Amsellem, 1980. Ultrastructure of the giant smooth muscle fiber of the Ctenophore Beroe ovata. J. Ultrastruct. Res., 72: 151–168.PubMedCrossRefGoogle Scholar
  19. Hyman, L. H., 1951. Class Rotifera. In: The Invertebrates. Mc Graw-Hill Book Company, Inc, New-york, Toronto, London, 3: 59–151.Google Scholar
  20. Hoyle, G., 1983. Muscles and their neural control. (Wiley, J. and Sons eds.), New-york, Chichester, Brisbane, Toronto, Singapour.Google Scholar
  21. Josephson, R. K., 1975. Extensive and intensive factors determining the performance of striated muscles. J. exp. Zool., 194: 135–154.PubMedCrossRefGoogle Scholar
  22. Knapp, M. F. & P. J. Mill, 1971. The contractile mechanism in obliquely striated body wall muscle of the earthworm Lumbricus terrestris. J. Cell Sci., 8: 413–425.PubMedGoogle Scholar
  23. Koehler, J. K., 1965. A fine study of the rotifer integument. J. exp. Zool, 162: 231–243.CrossRefGoogle Scholar
  24. Koehler, J. K, 1966. Some comparative fine structure relationships of the rotifer integument. J. exp. Zool, 162: 231–243.CrossRefGoogle Scholar
  25. Lanzavecchia, G, 1977. Morphological modulations in helical muscles (Aschelminthes and Annelida). Int. Revue Cytol. 51: 133–86.CrossRefGoogle Scholar
  26. Lanzavecchia, G. & G. Arcidiacono, 1981. Contraction mechanism of helical muscles: experimental and theoretical analysis. J. submicroscopic cytol., 13(2): 253–266.Google Scholar
  27. Lanzavecchia, G., M. De Eguileor & R. Valvassori, 1985. Superelongation in helical muscles of leeches. J. Musc. Res. Cell Motil., 6: 569–584.CrossRefGoogle Scholar
  28. Mackie, G. O. & C. L. Singla, 1975. Neurobiology of stomatoca. I. Action systems. J. Neurobiol. 6: 339–356.PubMedCrossRefGoogle Scholar
  29. Nicaise, G. & J. Amsellem, 1983. Cytology of muscle and neuromuscular junction. In: The Mollusca., Vol. 4. Physiology, Part I. 1–31.Google Scholar
  30. Pavans de Ceccatty, M., 1974. The origin of the integrative systems: a change in view derived from research on Coelenterates and Sponges. Perspectives in Biol, and Medic. 17(3): 379–390.Google Scholar
  31. Ress, G., 1975. The arrangement and ultrastructure of the musculature, nerves and epidermis in the tail of the cercaria of Cryptocotyle lingua (Creplin) from Littorina Littorea (L.). Proc. R. Soc. Lond., Ser. B, 190: 165–186.CrossRefGoogle Scholar
  32. Remane, A., 1929–32. Rotatoria. In: H. G. Bronn’s klassen und ordnungen des TierReichs, IV 1 (Rotatorien Gastrotrichen und Kinorhynchen), 2 (Verms), (Aschelminth), 5: 336–370.Google Scholar
  33. Rosenbluth, J., 1965. Ultrastructure of somatic muscle cells in Ascaris lumbricoides. J. Cell Biol. 26: 579–591.PubMedCrossRefGoogle Scholar
  34. Rosenbluth, J., 1967. Obliquely striated muscle. III. Contraction mechanism of Ascaris body muscle. J. Cell Biol., 34: 15–33.PubMedCrossRefGoogle Scholar
  35. Rosenbluth, J., 1972. Obliquely striated muscle. In: The structure and function of muscle. 2nd edition. Vol. I. Part 1 (Bourne G. H. Ed.) Academic Press, N.Y., London.Google Scholar
  36. Schramm, U., 1978. Studies on the ultrastructure of the integument of the rotifer Habrotrocha rosa Donne (Aschelminth). Cell Tissue Res. 189; 167–172.PubMedGoogle Scholar
  37. Ward, S. N., J. G. Thomson, White & S. Brenner, 1975. Electron microscopical reconstruction of the anterior sensory anatomy of the nematode Caenorhabditis elegans. J. Comp. Neurol., 160: 317–338.CrossRefGoogle Scholar
  38. Ware, R. W., B. Clark, K. Crossland & R. L. Russel, 1975. The nerve ring of the nematode Caenorabditis elegans: sensory input and motor output. J. Comp. Neurol. 162: 71–110.CrossRefGoogle Scholar
  39. Weber, W., 1970. Zur ultrastruktur des chromatophoren muskel zellen von Loligo vulgaris. Z. Zellforsch. Mikrosk. Anat., 108: 446–450.PubMedCrossRefGoogle Scholar
  40. Wood, R. L., 1961. In: The biology of Hydra and some other coelenterates (eds. Loomis W. F. & Lenhoff H. M.) Univ. of Miami Press: 51–64.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Pierre Clément
    • 1
  • Jacqueline Amsellem
    • 2
  1. 1.Laboratoire Ethologie, Equipe Neuro-Ethologie, IASBSEUniversité Lyon IVilleurbanneFrance
  2. 2.Laboratoire Histologie Expérimentale UA-CNRS 244, ICBMCUniversité Lyon IVilleurbanneFrance

Personalised recommendations