Advertisement

The rotifer communities of acid-stressed lakes of Maine

  • Michael T. Brett
Conference paper
Part of the Developments in Hydrobiology book series (DIHY, volume 52)

Abstract

The structure of the rotifer community in relation to lake pH, trophic status, the type of planktivore assemblage and the crustacean community was assessed in a survey of 23 lakes ranging in pH from 4.4 to 7.3, and in a study of two lakes — one acidic, the other circumneutral — during two summers. In both investigations the number of rotifer species encountered per sample was strongly reduced with pH. Although the reason for this is not clear acid-stress, the ultraoligotrophic nature of the acidic lakes, and competitive interactions with crustacean zooplankters may all have played a role. More importantly the ecological significance of this relationship is not known. The rotifer Keratella taurocephala was a principle species in the most acidic lakes, while several common rotifers were notably absent from these lakes. Although rotifer abundance was correlated with lake pH, the results of this study indicate that rotifer abundance is not a result of lake pH per se, but of lake trophic status and interactions with the crustacean community.

Key words

rotifer communities acidification Maine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aimer, B., W. Dickson, C. Ekström, & E. Hörnström, 1974. Effects of acidification on Swedish lakes. Ambio 3: 30–36.Google Scholar
  2. Brett, M. T., 1989a. The distribution of limnetic macro-invertebrates in acidic lakes of Maine: the Role of fish predation. Aque Fennica (in press).Google Scholar
  3. Brett, M. T., 1989b. Zooplankton communities and acidification processes — a review. Wat. Air Soil Pollut. 44: 387–414.CrossRefGoogle Scholar
  4. Brezonik, P. L., T. L. Crisman & R. L. Schulze, 1984. Plank-tonic communities in Florida softwater lakes of varying pH. Ca. J. Fish. aquat. Sci. 41: 46–56.CrossRefGoogle Scholar
  5. Carter, J.C.H., W. D. Taylor, R. Chengalath & D. A. Scruton, 1986. Limnetic zooplankton assemblages in Atlantic Canada with special reference to acidification. Ca. J. Fish. aquat. Sci. 43: 444–456.CrossRefGoogle Scholar
  6. Chengalath, R., W. J. Bruce & D. A. Scruton, 1984. Rotifer and crustacean plankton of lakes in insular Newfoundland. Verh. int. Ver. Limnol. 22: 419–430.Google Scholar
  7. Chengalath, R., & G. Mulamoottil, 1975. Littoral rotifera of Ontario — genus Trichocerca. Ca. J. Zool. 53: 1403–1411.Google Scholar
  8. DeCosta, J., A. Janicki, G. Snellito & G. Wilcox, 1983. The effect of phosphorus additions in enclosures on the phytoplankton and zooplankton of an acid lake. Oikos 40: 283–294.CrossRefGoogle Scholar
  9. Edmondson, W. T., 1959. Freshwater-biology. John Wiley, New York.Google Scholar
  10. Gilbert, J.J. 1985. Competition between rotifers and Daphnia. Ecology 66: 1943–1950.CrossRefGoogle Scholar
  11. Hobaek, A. & G. G. Raddum, 1980. Zooplankton communities in acidified regions of south Norway. SNSF-project. IR75/80.Google Scholar
  12. Kerekes, J. J., A. C. Blouin & S. T. Beauchamp, 1988. Trophic response to phosphorus in acidic and non acidic lakes in Nova Scotia, Canada. P. Biro (ed.) Trophic relationships in inland waters symposium, Tihany, Hungary. Junk Publ. Co. (in press).Google Scholar
  13. Kiefer, F. & G. Fryer, 1978. Das zooplankton def binnengewässer. Die binnengewässer. 26 (2).Google Scholar
  14. MacIsaac, H. J., W. Keller, T. C. Hutchinson & N. D. Yan, 1986. Natural changes in the planktonic rotifera of a small acid lake near Sudbury, Ontario following water quality improvements. Wat. Air Soil Pollut. 31: 791–797.CrossRefGoogle Scholar
  15. MacIssac, H. J., T. C. Hutchinson & W. Keller, 1987. Analysis of planktonic rotifer assemblages from Sudbury, Ontario, area lakes of varying chemical composition. Ca. J. Fish. aquat. Sci. 44: 1692–1701.CrossRefGoogle Scholar
  16. Makarewicz, J. C. & G. E. Likens, 1979. Structure and the function of the zooplankton community of Mirror Lake, New Hampshire. Ecol. Monogr. 49: 109–127. function of the zooplankton community of Mirror Lake, New Hampshire. Ecol. Monogr. 49: 109–127.CrossRefGoogle Scholar
  17. McCaully, E., 1984. The estimation of the abundance and biomass of zooplankton in samples. In Downing, J. A. and Rigler, F. H. (eds.), Secondary productivity in freshwaters. Blackwell Scientific Publications, Oxford. 228–265.Google Scholar
  18. Neill, W. E., 1984. Regulation of rotifer densities by crustacean zooplankton in an oligotrophic montane lake in British Columbia. Oecologia 61: 175–181.CrossRefGoogle Scholar
  19. Pejler, B., 1983. Zooplanktic indicators of trophy and their food. Hydrobiologia 101: 111–114.CrossRefGoogle Scholar
  20. Pennak, R. W., 1978. Fresh-water invertebrates of the United States. John Wiley, New York.Google Scholar
  21. Pinel-Alloul, B., G. Méthot & G. Codin-Blumer, 1987. Structure spatiale du zooplancton des lacs du Québec: relation avec l’acidité. Nat. can. 114: 295–305.Google Scholar
  22. Roff, J. C. & R. E. Kwiatkowski, 1977. Zooplankton and zoobenthos communities of selected northern Ontario lakes of different acidities. Ca. J. Zool. 55: 899–911.CrossRefGoogle Scholar
  23. Ruttner-Kolisko, A., 1974. Plankton rotifers. Biology and taxonomy. Die binnengewässer. 26(1).Google Scholar
  24. Schaffner, W. R. 1989. Effects of neutralization an the addition of brook trout (Salvelinus fontinalis) on the limnetic zooplankton communities of two acidic lakes. Ca. J. Fish. aquat. Sci. 46: 295–305.CrossRefGoogle Scholar
  25. Schindler, D. W., K. H. Mills, D. F. Malley, D. L. Findlay, J. A. Shearer, I. J. Davies, M. A. Turner, G. A. Linsey & D. R. Cruikshank, 1985. Long-term ecosystem stress: the effects of years of experimental acidification on a small lake. Science (Washington, DC) 228: 1395–1401.CrossRefGoogle Scholar
  26. Siegfried, C. A., J. A. Bloomfield & J. W. Sutherland, 1988. The planktonic rotifer community structure in Adirondack lakes in relation to acidity, trophic status, and related water quality characteristics. Hydrobiologia (in press).Google Scholar
  27. Siegfried, C. A., J. W. Sutherland & J. A. Bloomfield, 1987b. Analysis of plankton community structure in Adirondack lakes in relation to acidification. In R. Perry, R. M. Harrison, J. N. B. Bell & J. N. Lester (eds.). Acid Rain: Scientific and Technical Advances. Selper Ltd., London. 445–450.Google Scholar
  28. Siegfried, C. A., J. W. Sutherland, S. O. Quinn & J. A. Bloomfield, 1984. Lake acidification and the biology of Adirondack lakes: I. Rotifer communities. Verh. int. Ver. Limnol. 22: 549–558.Google Scholar
  29. Stemberger, R. S., 1979. A guide to rotifers of the Laurentian Great Lakes. US EPA, Report EPA 600/4-79-021.Google Scholar
  30. Yan, N. D. & W. Geiling, 1985. Elevated planktonic rotifer biomass in acidified metal-contaminated lakes near Sudbury, Ontario. Hydrobiologia 120: 199–205.CrossRefGoogle Scholar
  31. Yan, N. D. & C. Lafrance, 1984. Responses of acidic and neutralized lakes near Sudbury, Ontario, to nutrient enrichment. In J. Nriagu (ed.) Environmental impact of smelters. John Wiley and Sons, INC., New York. 457–521.Google Scholar
  32. Yan, N. D., C. J. Lafrance & G. G. Hitchin, 1982. Planktonic fluctuations in a fertilized, acidic lake: the role of invertebrate predators. In R. E. Johnson (ed.) Acid Rain/ Fisheries. Proceedings of a symposium on acidic rain and fishery impacts in northeastern North America. 137–154.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Michael T. Brett
    • 1
  1. 1.Institute of LimnologyUppsala UniversityUppsalaSweden

Personalised recommendations