Advertisement

Food limitation and body size in the life cycles of planktonic rotifers and cladocerans

  • Annie Duncan
Conference paper
Part of the Developments in Hydrobiology book series (DIHY, volume 52)

Abstract

This review considers what is known about the effects of food limitation upon the life cycle characteristics of rotifers and planktonic cladocerans. The characteristics considered in rotifers are the size of eggs, juveniles and adults and the durations of the juvenile phase and period of egg production. In cladocerans, the life history features dealt with are their length-weight relationships, the body size, instar stage, age and fecundity of the primiparous female and their fecundity-adult size relationship. The influence of limiting food conditions is demonstrated for these characteristics by comparison with the situation in non-limiting circumstances; the comparison is confined to experiments where food concentrations are quantified. A direct comparison is made between rotifers and cladocerans in conditions of defined food resource availability in terms of their length-weight relationships, the daily allocation of adults or near-adults to growth and reproduction and their threshold food concentrations. These comparisons are discussed in relation to the following topics: the high cost of cumulated respiration resulting from prolongation of the juvenile phase of body growth; the fundamentally different nature of growth in the two taxonomic groups; the body size of species and the size that must be attained for reproduction; the ecological implications of the very different threshold food concentrations.

Key words

food limitation body size duration of development fecundity life cycle studies rotifers cladocerans 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bottrell, H. H., A. Duncan, Z. M. Gliwicz, E. Grygierek, A. Herzig, A. Hillbricht-Ilkowska, H. Kurasawa, P. Larsson & T. Weglenska, 1976. A review of some problems in zooplankton production studies. Norw. J. Zool. 24: 419–456.Google Scholar
  2. Bohrer, R. N. & W. Lampert, 1988. Simultaneous measurement of the effect of food concentration on assimilation and respiration in Daphnia magna. Functional Ecology. 2: 463–471.CrossRefGoogle Scholar
  3. Calow, P., 1978. Life cycles. Chapman & Hall. 164 pp.Google Scholar
  4. Doohan, M. & V. Rainbow, 1971. Determination of dry weights of small Aschelminthes (<0.1 μg). Oecologia (Beri.). 6: 380–383.CrossRefGoogle Scholar
  5. Doohan, M., 1973. An energy budget for adult Brachionus plicatilis Muller (Rotatoria). Oecologia (Beri.). 13: 351–362.CrossRefGoogle Scholar
  6. Duncan, A., 1983. The influence of temperature upon the duration of embryonic development of tropical Brachionus species (Rotifera). IN: Schiemer, F. (ed.), Limnology of Parakrama Samudra — Sri Lanka. Junk. 107–115.Google Scholar
  7. Duncan, A., 1984. Assessment of factors influencing the composition, body size and turnover rate of zooplankton in Parakrama Samudra, an irrigation reservoir in Sri Lanka. Hydrobiologia. 113:201–215.CrossRefGoogle Scholar
  8. Duncan, A., 1985. Body carbon in daphnids as an indicator of the food concentration available in the field. Arch. Hydrobiol. Beih. Ergbn. Limnol. 21: 81–90.Google Scholar
  9. Duncan, A., 1985b. Carbon weight on length regressions of Daphnia spp. grown at threshold food concentrations. Verh. Int. Ver. Limnol. 22: 3109–15.Google Scholar
  10. Fenchel, T., 1980. Suspension feeding in ciliate Protozoa: feeding rates and their ecological significance. Microb. Ecol. 6: 13–25.CrossRefGoogle Scholar
  11. Gilbert, J. J. & R. S. Stemberger, 1984. Spine development in the rotifer Keratella cochlearis: induction by cyclopoid copepods and Asplanchna. Freshwat. Biol. 14: 639–647.CrossRefGoogle Scholar
  12. Hardy, E. R., 1989. Effect of temperature, food concentration and turbidity on the life cycle characteristics of planktonic cladocerans in a tropical lake, Central Amazon: a field and experimental study. PhD Thesis. University of London (RHBNC). 337 pp.Google Scholar
  13. Hrabackova, M., 1971. The size of primipara and neonates of Daphnia hyalina Leydig (Crustacea: Cladocera) under natural and enriched food conditions. Vest. Ces. Spol. Zool. 38(2): 98–105.Google Scholar
  14. Hrabackova, M. & J. Hrbacek, 1979. Rates of postembryonic development in several populations of the group of species Daphnia hyalina Leydig at various concentrations of food. Vest. Ces. Spol. Zool. 43(4): 253–259.Google Scholar
  15. Herzig, A., 1983a. The ecological significance of the relationship between temperature and duration of embryonic development in planktonic freshwater copepods. Hydrobiologia. 100: 65–91.CrossRefGoogle Scholar
  16. Herzig, A., 1983b. The ecological significance of the relationship between temperature and duration of embryonic development of rotifers. Hydrobiologia. 104: 237–46.CrossRefGoogle Scholar
  17. Ivanova, M. B. & S. V. Vasilenko, 1987. Relationship between number of eggs, brood weight and female body weight in Crustacea. Int. Revue ges. Hydrobiol. 72(2): 147–169.CrossRefGoogle Scholar
  18. Jayatunga, Y. N. A., 1986. The influence of food and temperature on the life cycle characteristics of tropical cladoceran species from Kalawewa Reservoir, Sri Lanka. PhD Thesis. University of London (RHBNC) 410 pp.Google Scholar
  19. King, C. E., 1967. Food, age and the dynamics of a laboratory population of rotifers. Ecology. 48(1): 111–128.CrossRefGoogle Scholar
  20. King, C. E., 1969. Genetics of reproduction, variation and adaptation in rotifers. Arch. Hydrobiol. Beih. Ergebn. Limnol. 8: 187–201.Google Scholar
  21. Lampert, W., 1977. Studies on the carbon balance of Daphnia pulex De Geer as related to environmental conditions. IV. Arch. Hydrobiol. Suppl. 48: 361–8.Google Scholar
  22. Leimeroth, N., 1980. Respiration of different stages and energy budget of juvenile Brachionus calyciflorus. Hydrobiologia. 73: 195–197.CrossRefGoogle Scholar
  23. Lubzens, E., 1987. Raising rotifers for use in aquaculture. Hydrobiologia. 147: 245–255.CrossRefGoogle Scholar
  24. Lynch, M., 1980. Predation, enrichment and the evolution of cladoceran life histories: a theoretical approach. IN: W. C. Kerfoot (ed.). Evolution and ecology of zooplankton communities. 367–376. Univ. Press, New Hampshire.Google Scholar
  25. Lynch, M., 1985. Elements of a mechanistic theory for the life history consequences of food limitation. Arch. Hydrobiol. Beih. Ergebn. Limnol. 21: 351–362.Google Scholar
  26. Pejler, B., 1980. Variation in the genus Keratella. Hydrobiologia. 73: 207–213.CrossRefGoogle Scholar
  27. Pilar ska, J., 1977. Eco-physiological studies on Brachionus rubens Ehrbg. (Rotatoria). Pol. Arch. Hydrobiol. 24: 319–354.Google Scholar
  28. Pourriott, R., 1973. Rapports entre la temperature, la taille des adultes, la longuer des œufs et le taux de developpement embryonnaire chez Brachionus calyciflorus. Pallas (Rotifere). Ann. Hydrobiol. 4: 103–115.Google Scholar
  29. Richards, F. J., 1959. A flexible growth function for empiracle use. J. exp. Botany. 10: 290–300.CrossRefGoogle Scholar
  30. Robertson, J. R. & Salt, G. W., 1981. Responses in growth, mortality and reproduction to variable food levels by the rotifer Asplanchna girodi. Ecology. 62(6): 1585–1596.CrossRefGoogle Scholar
  31. Rocha, O., 1983. The influence of food-temperature combinations on the duration of development, body size, growth and fecundity of Daphnia species. PhD Thesis, Royal Hol-loway College, University of London. 337 pp.Google Scholar
  32. Rocha, O. & Duncan, A., 1985. The relationship between cell carbon and cell volume in freshwater algal species used in zooplanktonic studies. J. Plankton. Res. 7(2): 279–294.CrossRefGoogle Scholar
  33. Ruttner-Kolisko, A., 1974. Plankton Rotifers. Biology and Taxonomy. Die Binnengewasser. 26: 1–146.Google Scholar
  34. Salonen, K., 1979. A versatile method for the rapid and accurate determination of carbon by high temperature combustion. Limnol. Oceanogr. 24: 177–183.CrossRefGoogle Scholar
  35. Santos, L. C. dos., 1989. The effects of food limitation on the population dynamics, production and biological interactions of three Daphnia species, co-existing in a London reservoir. PhD Thesis. University of London (RHBNC). 236 pp.Google Scholar
  36. Schiemer, F., 1985. Bioenergetic niche differentiation of aquatic invertebrates. Verh. Int. Ver. Limnol. 22: 3014–3018.Google Scholar
  37. Schiemer, F., A. Duncan & R. Z. Klekowski, 1980. A bioenergetic study of a benthic nematode, Plectus palustris de Man 1880, throughout its life cycle. Oecologia (Berl.). 44: 205–212.CrossRefGoogle Scholar
  38. Schnute, J., 1981. A versatile growth model with statistically stable parameters. Can. J. Fish. Aquat. Sci. 38:1128–1140.CrossRefGoogle Scholar
  39. Serra, M. & M. R. Miracle, 1987. Biometrie variation in three strains of Brachionus plicatilis as a direct response to abiotic variables. Hydrobiologia 147: 83–89.CrossRefGoogle Scholar
  40. Sibly, R. M. & P. Calow, 1986. Physiological Ecology of Animals. Balckwell Sci. Pubi. 179 pp.Google Scholar
  41. Snell, T. W., 1977. Clonal selection, competition among clones. Arch. Hydrobiol. Beih. Ergbn. Limnol. 8:202–204.Google Scholar
  42. Snell, T. W. & E. M. Boyer, 1988. Thresholds for mictic female production in the rotifer Brachionus plicatilis (Muller). J. exp. Mar. Biol. Ecol. 124: 73–85.CrossRefGoogle Scholar
  43. Snell, T. W. & K. Carrillo, 1984. Body size variations among strains of the rotifer Brachionus plicatilis. Aquaculture. 37: 359–367.CrossRefGoogle Scholar
  44. Snell, T. W. & C. E. King, 1977. Lifespan and fecundity patterns in rotifers: the cost of reproduction. Evolution. 31(4): 882–890.CrossRefGoogle Scholar
  45. Starkweather, P. L., 1987. Rotifera. chap. 5. IN: Pandian & Vernberg(eds.) Animal Energetics. 1: 159–183.Google Scholar
  46. Stemberger, R. S. & J. J. Gilbert, 1985a. Body size, food concentration and population growth in planktonic rotifers. Ecology. 66(4): 1151–1159.CrossRefGoogle Scholar
  47. Stemberger, R. S. & J. J. Gilbert, 1985b. Assessment of threshold food levels and population growth in planktonic rotifers. Arch. Hydrobiol. Beih. Ergebn. Limnol. 21: 269–275.Google Scholar
  48. Stemberger, R. S. & J. J. Gilbert, 1987. Rotifer threshold food concentrations and the size efficiency hypothesis. Ecology. 68(1): 181–187.CrossRefGoogle Scholar
  49. Taylor, W. D., 1978. Growth response of ciliate Protozoa to the abundance of their bacterial prey. Microb. Ecol. 4: 207–214.CrossRefGoogle Scholar
  50. Walz, N., 1983. Continuous culture of the pelagic rotifers, Keratella cochlearis and Brachionus annularis. Arch. Hydrobiol. 98(1): 70–92.Google Scholar
  51. Weglenska, T., 1971. The influence of various food concentrations of natural food on the development, fecundity and production of planktonic crustacean filtrators. Ekol. Pol. 19(30): 427–473.Google Scholar
  52. Yufera, M., 1987. Effect of algal diet and temperature on the embryonic development time of the rotifer Brachionus plicatilis. Hydrobiologia. 147: 319–322.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Annie Duncan
    • 1
  1. 1.Department of Biology, Royal Holloway & Bedford New CollegeUniversity of LondonEgham SurreyUK

Personalised recommendations