Skip to main content

Ion Implantation

  • Chapter
  • 502 Accesses

Abstract

Ion implantation (I2) provides an alternative to the predep diffusion for doping a host material. In contrast to diffusion which is a thermal process, I2 is controlled electrically. Voltages can be switched on or off very rapidly, whereas changing temperatures is very slow. Thus, ion implantation provides greater flexibility, particularly if shallow doping depths and low doping densities are needed. The price to be paid is more complicated and expensive apparatus.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See, for example, P. E. Gise and R. Blanchard, Semiconductor and Integrated Circuit Fabrication Techniques. Reston: Reston Publishing, 1979.

    Google Scholar 

  2. A number of different ion sources are described by J. F. Gibbons, “Ion Implantation in Semiconductors— Part I Range Distribution Theory and Experiment,” Proc. IEEE, 56, (3), 296–319, Mar. 1968.

    Google Scholar 

  3. Danfysik AS, Jyllinge, DK 4000 Roskilde, Denmark.

    Google Scholar 

  4. R. E. Honig, “Vapor Pressure Data for the Solid and Liquid Elements,” RCA Rev., 23, (4), 567–586, Dec. 1962

    Google Scholar 

  5. Handbook of Thin Film Materials. El Segundo: Sloan Materials Division, 1971.

    Google Scholar 

  6. J. L. Stone and J. C. Plunkett, “Recent Advances in Ion Implantation— State of the Art Review,” Solid State Technol., 9, (6), 35–44, June 1976.

    Google Scholar 

  7. Excellent diagrams showing this action are given by F. F. Morehead and B. L. Crowder, “Ion Implantation,” Sci. Am., 228, (4), 55–71, April 1973.

    Google Scholar 

  8. J. Lindhard, M. Scharff, and H. SchiØtt, “Range Concepts and Heavy Ion Ranges,” Kgl. Danske Vid. Selskab, Mat. Fys. Medd., 33, 1963.

    Google Scholar 

  9. A brief summary of the principal ideas is given by A. B. Glaser and G. E. Subak-Sharpe, Integrated Circuit Engineering, Design, Fabrication and Applications. Reading: Addison-Wesley, 1979.

    Google Scholar 

  10. J. F. Gibbons, W. S. Johnson, and S. W. Mylroie, Projected Range Statistics, Semiconductors and Related Materials, 2nd Ed. Stroudsburg: Dowden, Hutchinson, and Ross, 1975. Renewed © by John Wiley & Sons.

    Google Scholar 

  11. G. A. Gruber, “Ion Implant Testing for Production Control,” Solid State Technol., 26, (8), 159–167, Aug. 1983.

    Google Scholar 

  12. R. A. Colclaser, Microelectronics: Processing and Device Design. New York: Wiley, 1980.

    Google Scholar 

  13. An excellent general reference is J. F. Gibbons, “Ion Implantation in Semiconductors—II: Damage Production and Annealing,” Proc. IEEE, 60, (9),1062–1096, Sept. 1972.

    Article  Google Scholar 

  14. R. Ghez, G. S. Oehrlein, T. O. Sedgwick, F. F. Morehead, and Y. H. Lee, “Exact description and data fitting of ion-implanted dopant profile evolution during annealing,” App. Phys. Lett.,45 (8), 881–883, Oct. 15, 1984. This paper also shows the change in dopant profile from the implanted gaussian as the result of annealing at high temperatures in the diffusion range.

    Google Scholar 

  15. W. C. Till and J. T. Luxon, Integrated Circuits: Materials, Devices, and Fabrication. Englewood Cliffs: Prentice-Hall, 1982.

    Google Scholar 

  16. J. Sansbury, “Ion Implantation in Semiconductor Processing,” Solid State Technol.,19 (11), 31–37, Nov.1976. Table I of this reference lists the degree of achieved anneal for different temperatures.

    Google Scholar 

  17. An excellent summary is given by: J. F. Ready, B. T. McClure, and W. L. Larson, “Laser Annealing,” Scientific Honeyweller, 2, (3), 37–47, Sept. 1981. Note that this publication is an internal journal of the Honeywell Corporation.

    Google Scholar 

  18. See, for example, B. G. Streetman, Solid State Electronic Devices, 2nd. Ed. Englewood Cliffs: Prentice-Hall, 1980.

    Google Scholar 

  19. See, for example, T. Hara and T. Inada, “Ion Implantation in Gallium Arsenide,” Solid State Technol., 22, (11), 69–74, Nov. 1979.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Van Nostrand Reinhold

About this chapter

Cite this chapter

Anner, G.E. (1990). Ion Implantation. In: Planar Processing Primer. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0441-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0441-5_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6682-2

  • Online ISBN: 978-94-009-0441-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics