Skip to main content
  • 464 Accesses

Abstract

Silicon dioxide plays essential roles in silicon planar processing. It serves as the most common insulator and dielectric in the technology; it serves to mask silicon against the indiffusion of dopants; and it provides two types of passivation, first as a tough glassy covering that affords mechanical protection to completed dice, and second, as a means of saturating the dangling bonds at the surface of the wafer. By this process the wafer surface becomes well behaved, making for better devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. B. Sosman, “The Phases of Silica.” Am. Ceram. Soc. Bull., 43, (3), 213, March 1964. For greater detail, see R. B. Sosman, The Phases of Silica. New Brunswick: Rutgers University, 1965.

    Google Scholar 

  2. R. P. Donovan, “Oxidation.” In Fundamentals of Integrated Device Technology, ed. R. M. Burger and R. P. Donovan. Englewood Cliffs: Prentice-Hall, 1967.

    Google Scholar 

  3. W. G. Moffatt, G. W. Pearsall, and J. Wulff, The Structure and Properties of Materials. Vol. 1. New York: Wiley, 1964. Chap. 5.

    Google Scholar 

  4. R. J. Charles, “The Nature of Glasses.” Sci. Am., 217, (3), 126–136, Sept. 1967.

    Article  Google Scholar 

  5. Handbook of Tables for Applied Engineering Science,2nd Ed.,ed. R. E. Bolz and G. L. Tuve. Cleveland: CRC Press, 1973.

    Google Scholar 

  6. Handbook of Chemistry and Physics,51 >st>Ed.,ed. R. C. Weast. Cleveland: The Chemical Rubber Co., 1966.

    Google Scholar 

  7. L. H. Van Vlack, Physical Ceramics for Engineers. Reading: Addison-Wesley, 1964.

    Google Scholar 

  8. V.V. Tarasov, Physics of Glass (translation). Jerusalem: Israel Program for Scientific Translation, 1963.

    Google Scholar 

  9. J. T. Baker Chemical Co. catalog data. Also available is an “ultra pure reagent grade” that assays Na at 0.02 ppb (parts per billion or ng/g) in glacial acetic acid!

    Google Scholar 

  10. M. M. Atalla, “Semiconductor Surfaces and Films: The Silicon-Silicon Dioxide System.” In Properties of Elemental and Compound Semiconductors,Vol. 5, ed. H. Gatos, pp. 163–181. New York: Interscience, 1960.

    Google Scholar 

  11. B. E. Deal and A. S. Grove, “General Relationship for the Thermal Oxidation of Silicon,” J. Appl. Phys., 36, (12), 3770–3778, Dec. 1965.

    Article  Google Scholar 

  12. A. S. Grove, Physics and Technology of Semiconductor Devices. New York: Wiley, 1967.

    Google Scholar 

  13. D. T. Antoniadis, S. E. Hansen, and R. W. Dutton, “SUPREM II—A Program for IC Modeling and Simulation,” Technical Report No. 5019–2, Integrated Circuits Laboratory. Stanford: Stanford University, June 1978. Numerical data here are from the SUPREM manual, and are used with permission.

    Google Scholar 

  14. J. R. Pfiester, “PRIDE—Portable Process and Device Design,” Stanford: Integrated Circuits Laboratory, Stanford University, Aug. 1981. PRIDE was developed specifically for the HP-41CV calculator. The entire program, covering many semiconductor calculations, was available in a plug-in ROM module.

    Google Scholar 

  15. R. J. Kriegler, Y. C. Cheng, and D. R. Colton, “The Effect of HC1 and Cl2 on the Thermal Oxidation of Silicon,” J. Electrochem. Soc., 119, (3), 388–392, March 1972.

    Article  Google Scholar 

  16. D. W. Hess and B. E. Deal, “Kinetics of Thermal Oxidation of Silicon in O2/HC1 Mixtures,” J. Electrochem. Soc.,124, (5), 735–739, May 1977. This paper has an interesting discussion regading the effect of silicon orientation on the growth rate constants B and D.

    Google Scholar 

  17. R. S. Clark, “Thermal Oxidation of Silicon Using Trichloroethylene,” Solid State Technol., 21, (11), 80–82, Nov. 1978.

    Google Scholar 

  18. J. R. Flynn, “Trichloroethylene Oxidation of Silicon,” MS Thesis, EE Department, University of Illinois-UC, Dec. 1979.

    Google Scholar 

  19. B. E. Deal, “The Oxidation of Silicon in Dry Oxygen, Wet Oxygen, and Steam,” J. Electrochem. Soc., 110, (6), 527–532, June 1963.

    Article  Google Scholar 

  20. B. E. Deal et al., “Characteristics of Surface State Charge (Qss)of Thermally Oxidized Silicon,” J. Electrochem. Soc.,114, (3), 266–273, March 1967. The nitrogen anneal data are in part from A. S. Grove [12].

    Google Scholar 

  21. D. J. Levinthal, “Diffusion System Trends,” Semicond. Int., 2, (5), 31–41, June 1979.

    Google Scholar 

  22. W. A. Brown, “High-Pressure Oxidation,” Hewlett-Packard J.,33. (8), 34–36, Aug. 1982. This paper gives considerable data on the D and B rate constants as a function of pressure.

    Google Scholar 

  23. E. Bassous, H. N. Yu, and V. Maniscalco, “Topology of Silicon Structures with Recessed SiO2,” J. Electrochem. Soc., 123, (11), 1729–1737, Nov. 1976. The authors also discuss reasons for using the Nitox layer to protect the underlying Si surface.

    Google Scholar 

  24. I. Fränz and W. Langheinrich, “Conversion of Silicon Nitride into Silicon Dioxide Through the Influence of Oxygen,” Solid State Electron., 14, (6), 499–505, June 1971.

    Article  Google Scholar 

  25. A. B. Glaser and G. E. Subak-Sharpe, Integrated Circuit Engineering. Reading: Addison-Wesley, 1979.

    Google Scholar 

  26. Semiconductor Technology Handbook. Portola Valley: Technology Associates, 1978, Figure OX-9.

    Google Scholar 

  27. W. A. Pliskin and E. E. Conrad, “Nondestructive Determination of Thickness and Refractive Index of Transparent Films,” IBM J. Res. Dev., 8, (1), 43–51, Jan. 1964.

    Article  Google Scholar 

  28. P. E. Gise and R. Blanchard, Semiconductor and Integrated Circuit Fabrication Techniques. Reston: Reston, 1979.

    Google Scholar 

  29. R. J. Archer, “Determination of the Properties of Films on Silicon by the Method of Ellipsometry,”J. Opt. Soc. Am.,52, (9), 970–977, Sept. 1961.

    Article  Google Scholar 

  30. J. A. Appels et al., “Local Oxidation of Silicon and Its Application in Semiconductor-Device Technology,“ Philips Res. Repts., 25, (2), 118–132, April 1970.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Van Nostrand Reinhold

About this chapter

Cite this chapter

Anner, G.E. (1990). Oxidation. In: Planar Processing Primer. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0441-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0441-5_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6682-2

  • Online ISBN: 978-94-009-0441-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics