Skip to main content

Physical Vapor Deposition; Sputtering

  • Chapter
Planar Processing Primer

Abstract

It is necessary in wafer processing to add conductive materials to serve as interconnects, and dielectrics as insulators on the wafer. Two commonly used methods for doing this are: physical vapor deposition (PVD), which involves vacuum evaporation and deposition, and sputtering, which takes place in a gas at low pressure. In contrast to chemical vapor deposition (CVD), these methods usually do not involve chemical reactions for conductors, but they may for certain nonconducting compounds, e.g., silicon dioxide (SiO2) or silicon nitride (Si3N4). We consider these deposition methods in this chapter [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. W. Berry, P. H. Hall, and M. T. Harris, Thin Film Technology. Princeton: Van Nostrand, 1968.

    Google Scholar 

  2. R. E. Honig, “Vapor Pressure Data for the Solid and Liquid Elements, ” RCA Rev, 23, (4), 567–586, Dec. 1962.

    Google Scholar 

  3. R. E. Thun, “Thick Films or Thin, ” IEEE Spectrum, 6, (10), 73–79, Oct. 1969.

    Article  Google Scholar 

  4. Sloan Technology Corporation Handbook of Thin Film Materials Santa Barbara: Sloan Technology Division of Veeco Instruments Inc., 1970.

    Google Scholar 

  5. Sylvania Bulletin 235–1. Exeter, NH: Sylvania Emissive Products.

    Google Scholar 

  6. Sylvania Bulletin 225 GR-2 Exeter, NH: Sylvania Emissive Products.

    Google Scholar 

  7. J. B. Hedge and W. A. Bagot, “Power Parameters of Metallizing Boats, ” Res./ Dev, 13, (12), 32–37, Dec. 1971.

    Google Scholar 

  8. Veeco Catalog 71 Plainview, NJ: Veeco, 1971.

    Google Scholar 

  9. A. F. Plant, “A Little Weigh, ” Ind. Res., 13, (7), 36–39, July 1971.

    Google Scholar 

  10. S. N. Levine, Principles of Solid-State Microelectronics, New York: Holt, Rinehart and Winston, 1963.

    Google Scholar 

  11. A. Y. Cho, “Morphology of Epitaxial Growth of GaAs by a Molecular Beam Method: The Observation of Surface Structures,” J. Appl. Phys., 41, (7), 2780–2786, June 1970.

    Article  Google Scholar 

  12. T. E. Bell, “Innovations: Growing GaAs on silicon,” IEEE Spectrum, 23, (4), 25, April 1986.

    Google Scholar 

  13. P. H. Singer, “Molecular Beam Epitaxy,” Semicond. Int., 9, (10), 42–47, Oct. 1986.

    Google Scholar 

  14. P. E. Luscher, “Crystal Growth by Molecular Beam Epitaxy,” Solid State Technol, 20, (12), 43–51, Dec. 1877.

    Google Scholar 

  15. S. Wolf and R. N. Tauber, Silicon Processing for the VLSI Era, Volume 1—Process Technology. Sunset Beach: Lattice Press, 1986.

    Google Scholar 

  16. J. L. Vossen and J. J. O’Neil, “R-F Sputtering Processes,” RCA Rev, 29, (2), 149–179, June 1968.

    Google Scholar 

  17. J. E. Greene, “Epitaxial Crystal Growth by Sputter Deposition: Applications to Semiconductors, Part 1.” In CRC Critical Reviews in Solid State and Materials Sciences, ed. D. E. Schuele and R. W. Hoffman, Vol. 11, Issue 1, pp. 47–97. Boca Raton: CRC Press, 1983.

    Google Scholar 

  18. J. E. Greene, “Part 2,” loc. cit. [17] Vol. 11, Issue 3, pp. 189–227, 1984.

    Google Scholar 

  19. H. R. Koenig and L. I. Maissel, “Application of RF Discharges to Sputtering,” IBM J. Res. Dev., 14,(2) 168–171, Mar. 1970.

    Article  Google Scholar 

  20. R. K. Waits, “Planar Magnetron Sputtering.” In Thin Film Processes, ed. J. L. Vossen and W. Kern, Chap. II - 4, New York: Academic Press, 1978.

    Google Scholar 

  21. J. L. Vossen and J. J. Cuomo, “Glow Discharge in Sputter Deposition,” loc. cit. [20], Chap. II-1.

    Google Scholar 

  22. R. M. Starnes, Design and Installation of a Diode Sputtering System, MS Thesis, EE Dept., UIUC, 1969.

    Google Scholar 

  23. R. M. Starnes, A Study of Dipolar Polarization in Silicon Nitride Films Using an Adapted Thermally Stimulated Current Technique, PhD Thesis, EE Dept. and Coordinated Science Lab., UIUC, April 1972.

    Google Scholar 

  24. N. M. Mazza, “Automatic Impedance Matching System for RF Sputtering,” IBM J. Res. Dev., 14, (2), 192–193, Mar. 1970.

    Article  Google Scholar 

  25. F. Turner, “A New Frontier in Sputtering Equipment,” Varian Vacuum News, pp. 1, 4, Feb. 1973.

    Google Scholar 

  26. J. S. Logan, “Control of RF Sputtered Film Properties Through Substrate Tuning,” IBM J. Res. Dev., 14, (2), 172–175, Mar. 1970. Also in Solid State Technol, 13, (12), 46–48, 53, Dec. 1970.

    Google Scholar 

  27. J. A. Thornton and A. S. Penfold, “Cylindrical Magnetron Sputtering,” loc. cit. [20], Chap. II-2.

    Google Scholar 

  28. V. Hoffman, I. Weissman, and D. Sanservino, “The Thin Film,” Ind. Res., 14, (11), 50–53, Oct. 1972.

    Google Scholar 

  29. T. S. Gray, Applied Electronics, 2nd Ed New York: Wiley, 1954. Chap. 1, Art. 8d.

    Google Scholar 

  30. G. K. Wehner and G. S. Anderson, “The Nature of Physical Sputtering.” In Handbook of Thin Film Technology, ed. L. I. Maissel and R. Glang, Chap. 3. New York: McGraw-Hill, 1970.

    Google Scholar 

  31. G. K. Wehner and G. S. Anderson, loc. cit. [30], Chap. 4.

    Google Scholar 

  32. I. H. Pratt, “Thin Film Dielectric Properties of RF Sputtered Oxides,” Solid State Technol, 12, (2), 49–57, Dec. 1969.

    Google Scholar 

  33. P. D. Davidse and L. I. Maissel, “Dielectric Films through rf Sputtering,” J. Appl. Phys., 37, (2), 574–579, Feb. 1966.

    Article  Google Scholar 

  34. “Sputter Etching & Deposition, Theory and Applications of Glow Discharges,” Circuits Manuf, 217, (2), 78–81, Feb. 1981.

    Google Scholar 

  35. L. T. Lamont, Jr., “Thin Film Notebook: Chap. VIII, R. F. Sputtering,” Varian Vacuum News, pp. 2, 4, Nov. 1972; also Chap. IX, p. 2, Feb. 1973.

    Google Scholar 

  36. K. L. Chopra, Thin Film Phenomena. New York: McGraw-Hill, 1969.

    Google Scholar 

  37. L. Kammerdiner and M. Reeder, “Codeposition vs Layering of Sputtered Silicide Films,” Semicond. Int., 7, (8), 122–126, Aug. 1984.

    Google Scholar 

  38. P. S. McLeod, “Reactive Sputtering,” Solid State Technol, 26, (10), 207–211, Oct. 1983.

    Google Scholar 

  39. K. Urbanek, “Magnetron Sputtering of Si02: An Alternative to Chemical Vapor Deposition,” Solid State Technol, 20, (4), 87–90, April 1977.

    Google Scholar 

  40. Christensen, “Characteristics and Applications of Bias Sputtering,” Solid State Technol, 13, (12), 39–45, Dec. 1970.

    Google Scholar 

  41. J. F. Smith, “Influence of DC Bias Sputtering During Aluminum Metallization,” Solid State Technol, 27, (1), 135–138, Jan. 1984.

    Google Scholar 

  42. “Ion Plating: The Best of Sputtering and Evaporation,” Circuits Manuf, 12, (1), 10, 12–14, Jan. 1972.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Van Nostrand Reinhold

About this chapter

Cite this chapter

Anner, G.E. (1990). Physical Vapor Deposition; Sputtering. In: Planar Processing Primer. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0441-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0441-5_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6682-2

  • Online ISBN: 978-94-009-0441-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics